
	

Continue

https://norin.co.za/YmrXLWy8?keyword=fundamentals%20of%20logic%20design%20pdf

Fundamentals	of	logic	design	pdf

www.allitebooks.com	Fundamentals	of	Logic	Design	SEVENTH	EDITION	Charles	H.	Roth,	Jr.	University	of	Texas	at	Austin	Larry	L.	Kinney	University	of	Minnesota,	Twin	Cities	$XVWUDOLDä%UD]LOä-DSDQä.RUHDä0H[LFRä6LQJDSRUHä6SDLQä8QLWHG.LQJGRPä8QLWHG6WDWHV	www.allitebooks.com	k20142010DQG2004&HQJDJH/HDUQLQJ
Fundamentals	of	Logic	Design,	Seventh	Edition	$//5,*+765(6(59('1RSDUWRIWKLVZRUNFRYHUHGE\WKH	FRS\ULJKWKHUHLQPD\EHUHSURGXFHGWUDQVPLWWHGVWRUHGRUXVHG	LQDQ\IRUPRUE\DQ\PHDQVJUDSKLFHOHFWURQLFRUPHFKDQLFDO	LQFOXGLQJEXWQRWOLPLWHGWRSKRWRFRS\LQJUHFRUGLQJVFDQQLQJ
GLJLWL]LQJWDSLQJZHEGLVWULEXWLRQLQIRUPDWLRQQHWZRUNVRU	LQIRUPDWLRQVWRUDJHDQGUHWULHYDOV\VWHPVH[FHSWDVSHUPLWWHGXQGHU	6HFWLRQ107RU108RIWKH19768QLWHG6WDWHV&RS\ULJKW$FWZLWKRXW	WKHSULRUZULWWHQSHUPLVVLRQRIWKHSXEOLVKHU	Charles	H.	Roth,	Jr.	and	Larry	L.	Kinney
3XEOLVKHU*OREDO(QJLQHHULQJ7LP$QGHUVRQ	6HQLRU'HYHORSPHQWDO(GLWRU+LOGD*RZDQV	(GLWRULDO$VVLVWDQW7DQ\D$OWLHUL	6HQLRU0DUNHWLQJ0DQDJHU.DWH,DQQRWWL	0HGLD(GLWRU&KULV9DOHQWLQH)RUSURGXFWLQIRUPDWLRQDQGWHFKQRORJ\DVVLVWDQFHFRQWDFWXVDW	Cengage	Learning
Customer	&	Sales	Support,	1-800-354-9706	&RQWHQW3URMHFW0DQDJHU-HQQLIHU=LHJOHU	3URGXFWLRQ6HUYLFH53.(GLWRULDO6HUYLFHV	&RS\HGLWRU3DWULFLD'DO\)RUSHUPLVVLRQWRXVHPDWHULDOIURPWKLVWH[WRUSURGXFWVXEPLWDOO	UHTXHVWVRQOLQHDWwww.cengage.com/permissions
)XUWKHUSHUPLVVLRQVTXHVWLRQVFDQEHHPDLOHGWR		3URRIUHDGHU0DUWKD0F0DVWHU	,QGH[HU6KHOO*HUJHU.QHFKWO	&RPSRVLWRUGLDFUL7HFK	6HQLRU$UW'LUHFWRU0LFKHOOH.XQNOHU	/LEUDU\RI&RQJUHVV&RQWURO1XPEHU2012952056	,QWHUQDO'HVLJQHU&DUPHOD3HULHUD	,6%113978-1-
133-62847-7	,6%1101133628478	&RYHU'HVLJQHU5RVH$OFRUQ	&RYHU,PDJHk.XGU\DVKND6KXWWHUVWRFNFRP	kWRYRYDQ6KXWWHUVWRFNFRP	5LJKWV$FTXLVLWLRQV6SHFLDOLVW$PEHU+RVHD	7H[WDQG,PDJH3HUPLVVLRQV5HVHDUFKHU	.ULVWLLQD3DXO	6HQLRU0DQXIDFWXULQJ3ODQQHU'RXJ:LONH	Cengage	Learning
200)LUVW6WDPIRUG3ODFH6XLWH400	6WDPIRUG&706902	86$	&HQJDJH/HDUQLQJLVDOHDGLQJSURYLGHURIFXVWRPL]HGOHDUQLQJ	VROXWLRQVZLWKRėFHORFDWLRQVDURXQGWKHJOREHLQFOXGLQJ6LQJDSRUH	WKH8QLWHG.LQJGRP$XVWUDOLD0H[LFR%UD]LODQG-DSDQ/RFDWH\RXU
ORFDORėFHDWinternational.cengage.com/region	&HQJDJH/HDUQLQJSURGXFWVDUHUHSUHVHQWHGLQ&DQDGDE\	1HOVRQ(GXFDWLRQ/WG)RU\RXUFRXUVHDQGOHDUQLQJVROXWLRQVYLVLW	www.cengage.com/engineering	3XUFKDVHDQ\RIRXUSURGXFWVDW\RXUORFDOFROOHJHVWRUHRUDWRXU
SUHIHUUHGRQOLQHVWRUHwww.cengagebrain.com	([FHSWZKHUHRWKHUZLVHQRWHGDOOFRQWHQWLVk&HQJDJH/HDUQLQJ2014	Printed	in	the	United	States	of	America	1	2	3	4	5	6	7	16	15	14	13	www.allitebooks.com	Dedication	Dedicated	to	the	memory	of	Karen	Kinney	and	our	daughters,	Laurie	and	Kristina.	—Larry	Kinney
www.allitebooks.com	Brief	Contents	1	2	3	Introduction	Number	Systems	and	Conversion	4	5	6	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	7	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	193	8	Combinational	Circuit	Design	and	Simulation	Using	Gates	225	9	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	252
Boolean	Algebra	29	Boolean	Algebra	(Continued)	Karnaugh	Maps	1	60	87	123	Quine-McCluskey	Method	www.allitebooks.com	167	viii	Brief	Contents	10	11	12	13	14	15	16	17	18	19	20	Introduction	to	VHDL	Latches	and	Flip-Flops	294	331	Registers	and	Counters	370	Analysis	of	Clocked	Sequential	Circuits	Derivation	of	State	Graphs	and	Tables	412
453	Reduction	of	State	Tables	State	Assignment	497	Sequential	Circuit	Design	VHDL	for	Sequential	Logic	545	585	Circuits	for	Arithmetic	Operations	626	State	Machine	Design	with	SM	Charts	VHDL	for	Digital	System	Design	Appendices	713	www.allitebooks.com	684	660	Contents	Preface	xvii	How	to	Use	This	Book	for	Self-Study	About	the	Authors
xxiii	xxii	Unit	1	Introduction	Number	Systems	and	Conversion	1.1	1.2	1.3	1.4	1.5	Objectives	1	Study	Guide	2	Digital	Systems	and	Switching	Circuits	6	Number	Systems	and	Conversion	8	Binary	Arithmetic	12	Representation	of	Negative	Numbers	16	Sign	and	Magnitude	Numbers	16	2’s	Complement	Numbers	16	Addition	of	2’s	Complement	Numbers
17	1’s	Complement	Numbers	19	Addition	of	1’s	Complement	Numbers	19	Binary	Codes	21	Problems	24	Unit	2	Boolean	Algebra	2.1	2.2	2.3	1	29	Objectives	29	Study	Guide	30	Introduction	36	Basic	Operations	37	Boolean	Expressions	and	Truth	Tables	39	ix	www.allitebooks.com	x	Contents	2.4	2.5	2.6	2.7	2.8	Basic	Theorems	41	Commutative,
Associative,	Distributive,	and	DeMorgan’s	Laws	43	Simplification	Theorems	46	Multiplying	Out	and	Factoring	49	Complementing	Boolean	Expressions	52	Problems	53	Unit	3	Boolean	Algebra	(Continued)	3.1	3.2	3.3	3.4	3.5	60	Objectives	60	Study	Guide	61	Multiplying	Out	and	Factoring	Expressions	66	Exclusive-OR	and	Equivalence	Operations	68	The
Consensus	Theorem	70	Algebraic	Simplification	of	Switching	Expressions	Proving	Validity	of	an	Equation	74	Programmed	Exercises	77	Problems	82	Unit	4	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	4.1	4.2	4.3	4.4	4.5	4.6	4.7	87	Objectives	87	Study	Guide	88	Conversion	of	English	Sentences	to	Boolean	Equations
Combinational	Logic	Design	Using	a	Truth	Table	96	Minterm	and	Maxterm	Expansions	97	General	Minterm	and	Maxterm	Expansions	100	Incompletely	Specified	Functions	103	Examples	of	Truth	Table	Construction	104	Design	of	Binary	Adders	and	Subtracters	108	Problems	114	Unit	5	Karnaugh	Maps	5.1	5.2	72	123	Objectives	123	Study	Guide	124
Minimum	Forms	of	Switching	Functions	Two-	and	Three-Variable	Karnaugh	Maps	www.allitebooks.com	134	136	94	Contents	5.3	5.4	5.5	5.6	5.7	Four-Variable	Karnaugh	Maps	141	Determination	of	Minimum	Expressions	Using	Essential	Prime	Implicants	144	Five-Variable	Karnaugh	Maps	149	Other	Uses	of	Karnaugh	Maps	152	Other	Forms	of
Karnaugh	Maps	153	Programmed	Exercises	154	Problems	159	Unit	6	Quine-McCluskey	Method	6.1	6.2	6.3	6.4	6.5	6.6	167	Objectives	167	Study	Guide	168	Determination	of	Prime	Implicants	173	The	Prime	Implicant	Chart	176	Petrick’s	Method	179	Simplification	of	Incompletely	Specified	Functions	Simplification	Using	Map-Entered	Variables	182
Conclusion	184	Programmed	Exercise	185	Problems	189	181	Unit	7	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	193	7.1	7.2	7.3	7.4	7.5	7.6	7.7	Objectives	193	Study	Guide	194	Multi-Level	Gate	Circuits	199	NAND	and	NOR	Gates	204	Design	of	Two-Level	NAND-	and	NOR-Gate	Circuits	206	Design	of	Multi-Level	NAND-	and	NOR-Gate	Circuits	209
Circuit	Conversion	Using	Alternative	Gate	Symbols	210	Design	of	Two-Level,	Multiple-Output	Circuits	214	Determination	of	Essential	Prime	Implicants	for	Multiple-Output	Realization	216	Multiple-Output	NAND-	and	NOR-Gate	Circuits	217	Problems	218	www.allitebooks.com	xi	xii	Contents	Unit	8	Combinational	Circuit	Design	and	Simulation	Using
Gates	225	8.1	8.2	8.3	8.4	8.5	Objectives	225	Study	Guide	226	Review	of	Combinational	Circuit	Design	229	Design	of	Circuits	with	Limited	Gate	Fan-In	230	Gate	Delays	and	Timing	Diagrams	232	Hazards	in	Combinational	Logic	234	Simulation	and	Testing	of	Logic	Circuits	240	Problems	243	Design	Problems	246	Seven-Segment	Indicator	246	Unit	9
Multiplexers,	Decoders,	and	Programmable	Logic	Devices	252	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	Objectives	252	Study	Guide	253	Introduction	260	Multiplexers	261	Three-State	Buffers	265	Decoders	and	Encoders	268	Read-Only	Memories	271	Programmable	Logic	Devices	275	Programmable	Logic	Arrays	275	Programmable	Array	Logic	278	Complex
Programmable	Logic	Devices	280	Field-Programmable	Gate	Arrays	282	Decomposition	of	Switching	Functions	283	Problems	286	Unit	10	Introduction	to	VHDL	294	Objectives	294	Study	Guide	295	10.1	VHDL	Description	of	Combinational	Circuits	10.2	VHDL	Models	for	Multiplexers	304	10.3	VHDL	Modules	306	Four-Bit	Full	Adder	308
www.allitebooks.com	299	Contents	10.4	10.5	10.6	10.7	10.8	10.9	Signals	and	Constants	311	Arrays	312	VHDL	Operators	315	Packages	and	Libraries	316	IEEE	Standard	Logic	318	Compilation	and	Simulation	of	VHDL	Code	Problems	322	Design	Problems	327	Unit	11	Latches	and	Flip-Flops	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9	11.10	12.2	12.3
12.4	12.5	12.6	331	Objectives	331	Study	Guide	332	Introduction	336	Set-Reset	Latch	338	Gated	Latches	342	Edge-Triggered	D	Flip-Flop	346	S-R	Flip-Flop	349	J-K	Flip-Flop	350	T	Flip-Flop	351	Flip-Flops	with	Additional	Inputs	352	Asynchronous	Sequential	Circuits	354	Summary	357	Problems	358	Programmed	Exercise	367	Unit	12	Registers	and
Counters	12.1	321	370	Objectives	370	Study	Guide	371	Registers	and	Register	Transfers	376	Parallel	Adder	with	Accumulator	378	Shift	Registers	380	Design	of	Binary	Counters	384	Counters	for	Other	Sequences	389	Counter	Design	Using	D	Flip-Flops	393	Counter	Design	Using	S-R	and	J-K	Flip-Flops	395	Derivation	of	Flip-Flop	Input	Equations—
Summary	Problems	402	398	xiii	xiv	Contents	Unit	13	Analysis	of	Clocked	Sequential	Circuits	13.1	13.2	13.3	13.4	Objectives	412	Study	Guide	413	A	Sequential	Parity	Checker	419	Analysis	by	Signal	Tracing	and	Timing	Charts	421	State	Tables	and	Graphs	425	Construction	and	Interpretation	of	Timing	Charts	430	General	Models	for	Sequential
Circuits	432	Programmed	Exercise	436	Problems	441	Unit	14	Derivation	of	State	Graphs	and	Tables	14.1	14.2	14.3	14.4	14.5	14.6	412	453	Objectives	453	Study	Guide	454	Design	of	a	Sequence	Detector	457	More	Complex	Design	Problems	463	Guidelines	for	Construction	of	State	Graphs	Serial	Data	Code	Conversion	473	Alphanumeric	State	Graph
Notation	476	Incompletely	Specified	State	Tables	478	Programmed	Exercises	480	Problems	486	467	Unit	15	Reduction	of	State	Tables	State	Assignment	497	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	Objectives	497	Study	Guide	498	Elimination	of	Redundant	States	505	Equivalent	States	507	Determination	of	State	Equivalence	Using	an
Implication	Table	509	Equivalent	Sequential	Circuits	512	Reducing	Incompletely	Specified	State	Tables	514	Derivation	of	Flip-Flop	Input	Equations	517	Equivalent	State	Assignments	519	Guidelines	for	State	Assignment	523	Using	a	One-Hot	State	Assignment	528	Problems	531	Contents	Unit	16	Sequential	Circuit	Design	16.1	16.2	16.3	16.4	16.5	16.6
16.7	16.8	17.1	17.2	17.3	17.4	17.5	17.6	545	Objectives	545	Study	Guide	546	Summary	of	Design	Procedure	for	Sequential	Circuits	Design	Example—Code	Converter	549	Design	of	Iterative	Circuits	553	Design	of	a	Comparator	553	Design	of	Sequential	Circuits	Using	ROMs	and	PLAs	Sequential	Circuit	Design	Using	CPLDs	559	Sequential	Circuit
Design	Using	FPGAs	563	Simulation	and	Testing	of	Sequential	Circuits	565	Overview	of	Computer-Aided	Design	570	Design	Problems	572	Additional	Problems	578	Unit	17	VHDL	for	Sequential	Logic	xv	548	556	585	Objectives	585	Study	Guide	586	Modeling	Flip-Flops	Using	VHDL	Processes	590	Modeling	Registers	and	Counters	Using	VHDL
Processes	594	Modeling	Combinational	Logic	Using	VHDL	Processes	Modeling	a	Sequential	Machine	601	Synthesis	of	VHDL	Code	608	More	About	Processes	and	Sequential	Statements	611	Problems	613	Simulation	Problems	624	Unit	18	Circuits	for	Arithmetic	Operations	626	Objectives	626	Study	Guide	627	18.1	Serial	Adder	with	Accumulator	629
18.2	Design	of	a	Binary	Multiplier	633	18.3	Design	of	a	Binary	Divider	637	Programmed	Exercises	644	Problems	648	599	xvi	Contents	Unit	19	State	Machine	Design	with	SM	Charts	660	Objectives	660	Study	Guide	661	19.1	State	Machine	Charts	662	19.2	Derivation	of	SM	Charts	667	19.3	Realization	of	SM	Charts	672	Problems	677	Unit	20	VHDL	for
Digital	System	Design	20.1	20.2	20.3	20.4	20.5	Objectives	684	Study	Guide	685	VHDL	Code	for	a	Serial	Adder	688	VHDL	Code	for	a	Binary	Multiplier	690	VHDL	Code	for	a	Binary	Divider	700	VHDL	Code	for	a	Dice	Game	Simulator	702	Concluding	Remarks	705	Problems	706	Lab	Design	Problems	709	A	Appendices	A	B	C	D	E	684	713	MOS	and	CMOS
Logic	713	VHDL	Language	Summary	719	Tips	for	Writing	Synthesizable	VHDL	Code	724	Proofs	of	Theorems	727	Answers	to	Selected	Study	Guide	Questions	and	Problems	References	785	Index	786	Description	of	the	CD	792	729	Preface	Purpose	of	the	Text	This	text	is	written	for	a	first	course	in	the	logic	design	of	digital	systems.	It	is	written	on	the
premise	that	the	student	should	understand	and	learn	thoroughly	certain	fundamental	concepts	in	a	first	course.	Examples	of	such	fundamental	concepts	are	the	use	of	Boolean	algebra	to	describe	the	signals	and	interconnections	in	a	logic	circuit,	use	of	systematic	techniques	for	simplification	of	a	logic	circuit,	interconnection	of	simple	components	to
perform	a	more	complex	logic	function,	analysis	of	a	sequential	logic	circuit	in	terms	of	timing	charts	or	state	graphs,	and	use	of	a	control	circuit	to	control	the	sequence	of	events	in	a	digital	system.	The	text	attempts	to	achieve	a	balance	between	theory	and	application.	For	this	reason,	the	text	does	not	overemphasize	the	mathematics	of	switching
theory;	however,	it	does	present	the	theory	that	is	necessary	for	understanding	the	fundamental	concepts	of	logic	design.	After	completing	this	text,	the	student	should	be	prepared	for	a	more	advanced	digital	systems	design	course	that	stresses	more	intuitive	concepts	like	the	development	of	algorithms	for	digital	processes,	partitioning	of	digital
systems	into	subsystems,	and	implementation	of	digital	systems	using	currently	available	hardware.	Alternatively,	the	student	should	be	prepared	to	go	on	to	a	more	advanced	course	in	switching	theory	that	further	develops	the	theoretical	concepts	that	have	been	introduced	here.	Contents	of	the	Text	After	studying	this	text,	students	should	be	able
to	apply	switching	theory	to	the	solution	of	logic	design	problems.	They	will	learn	both	the	basic	theory	of	switching	circuits	and	how	to	apply	it.	After	a	brief	introduction	to	number	systems,	they	will	study	switching	algebra,	a	special	case	of	Boolean	algebra,	which	is	the	basic	mathematical	tool	needed	to	analyze	and	synthesize	an	important	class	of
switching	xvii	xviii	Preface	circuits.	Starting	from	a	problem	statement,	they	will	learn	to	design	circuits	of	logic	gates	that	have	a	specified	relationship	between	signals	at	the	input	and	output	terminals.	Then	they	will	study	the	logical	properties	of	flip-flops,	which	serve	as	memory	devices	in	sequential	switching	circuits.	By	combining	flip-flops	with
circuits	of	logic	gates,	they	will	learn	to	design	counters,	adders,	sequence	detectors,	and	similar	circuits.	They	will	also	study	the	VHDL	hardware	description	language	and	its	application	to	the	design	of	combinational	logic,	sequential	logic,	and	simple	digital	systems.	As	integrated	circuit	technology	continues	to	improve	to	allow	more	components
on	a	chip,	digital	systems	continue	to	grow	in	complexity.	Design	of	such	complex	systems	is	facilitated	by	the	use	of	a	hardware	description	language	such	as	VHDL.	This	text	introduces	the	use	of	VHDL	in	logic	design	and	emphasizes	the	relationship	between	VHDL	statements	and	the	corresponding	digital	hardware.	VHDL	allows	digital	hardware
to	be	described	and	simulated	at	a	higher	level	before	it	is	implemented	with	logic	components.	Computer	programs	for	synthesis	can	convert	a	VHDL	description	of	a	digital	system	to	a	corresponding	set	of	logic	components	and	their	interconnections.	Even	though	use	of	such	computer-aided	design	tools	helps	to	automate	the	logic	design	process,
we	believe	that	it	is	important	to	understand	the	underlying	logic	components	and	their	timing	before	writing	VHDL	code.	By	first	implementing	the	digital	logic	manually,	students	can	more	fully	appreciate	the	power	and	limitations	of	VHDL.	Although	the	technology	used	to	implement	digital	systems	has	changed	significantly	since	the	first	edition	of
this	text	was	published,	the	fundamental	principles	of	logic	design	have	not.	Truth	tables	and	state	tables	still	are	used	to	specify	the	behavior	of	logic	circuits,	and	Boolean	algebra	is	still	a	basic	mathematical	tool	for	logic	design.	Even	when	programmable	logic	devices	(PLDs)	are	used	instead	of	individual	gates	and	flip-flops,	reduction	of	logic
equations	is	still	desirable	in	order	to	fit	the	equations	into	smaller	PLDs.	Making	a	good	state	assignment	is	still	desirable,	because	without	a	good	assignment,	the	logic	equations	may	require	larger	PLDs.	Strengths	of	the	Text	Although	many	texts	are	available	in	the	areas	of	switching	theory	and	logic	design,	this	text	is	designed	so	that	it	can	be
used	in	either	a	standard	lecture	course	or	in	a	self-paced	course.	In	addition	to	the	standard	reading	material	and	problems,	study	guides	and	other	aids	for	self-study	are	included	in	the	text.	The	content	of	the	text	is	divided	into	20	study	units.	These	units	form	a	logical	sequence	so	that	mastery	of	the	material	in	one	unit	is	generally	a	prerequisite
to	the	study	of	succeeding	units.	Each	unit	consists	of	four	parts.	First,	a	list	of	objectives	states	precisely	what	you	are	expected	to	learn	by	studying	the	unit.	Next,	the	study	guide	contains	reading	assignments	and	study	questions.	As	you	work	through	the	unit,	you	should	write	out	the	answers	to	these	study	questions.	The	text	material	and
problem	set	that	follow	Preface	xix	are	similar	to	a	conventional	textbook.	When	you	complete	a	unit,	you	should	review	the	objectives	and	make	sure	that	you	have	met	them.	Each	of	the	units	has	undergone	extensive	class	testing	in	a	self-paced	environment	and	has	been	revised	based	on	student	feedback.	The	study	units	are	divided	into	three	main
groups.	The	first	9	units	treat	Boolean	algebra	and	the	design	of	combinational	logic	circuits.	Units	11	through	16,	18	and	19	are	mainly	concerned	with	the	analysis	and	design	of	clocked	sequential	logic	circuits,	including	circuits	for	arithmetic	operations.	Units	10,	17,	and	20	introduce	the	VHDL	hardware	description	language	and	its	application	to
logic	design.	The	text	is	suitable	for	both	computer	science	and	engineering	students.	Material	relating	to	circuit	aspects	of	logic	gates	is	contained	in	Appendix	A	so	that	this	material	can	conveniently	be	omitted	by	computer	science	students	or	other	students	with	no	background	in	electronic	circuits.	The	text	is	organized	so	that	Unit	6	on	the	Quine-
McCluskey	procedure	may	be	omitted	without	loss	of	continuity.	The	three	units	on	VHDL	can	be	studied	in	the	normal	sequence,	studied	together	after	the	other	units,	or	omitted	entirely.	Supplements	and	Resources	This	book	comes	with	support	materials	for	both	the	instructor	and	the	student.	The	supplements	are	housed	on	the	book’s	companion
website.	To	access	the	additional	course	materials,	please	visit	www.cengagebrain.com.	At	the	cengagebrain.com	home	page,	search	for	the	ISBN	of	your	title	(from	the	back	cover	of	your	book)	using	the	search	box	at	the	top	of	the	page.	This	will	take	you	to	the	product	page	where	these	resources	can	be	found.	Instructor	Resources	An	instructor’s
solution	manual	(ISM)	is	available	that	includes	suggestions	for	using	the	text	in	a	standard	or	self-paced	course,	quizzes	on	each	of	the	units,	and	suggestions	for	laboratory	equipment	and	procedures.	The	instructor’s	manual	also	contains	solutions	to	problems,	to	unit	quizzes,	and	to	lab	exercises.	The	ISM	is	available	in	both	print	and	digital
formats.	The	digital	version	is	available	to	registered	instructors	at	the	publisher’s	website.	This	website	also	includes	both	a	full	set	of	PowerPoint	slides	containing	all	graphical	images	and	tables	in	the	text,	and	a	set	of	Lecture	Builder	PowerPoint	slides	of	all	equations	and	example	problems.	Student	Resources	Since	the	computer	plays	an
important	role	in	the	logic	design	process,	integration	of	computer	usage	into	the	first	logic	design	course	is	very	important.	A	computer-aided	logic	design	program,	called	LogicAid,	is	included	on	the	CD	that	accompanies	this	xx	Preface	text.	LogicAid	allows	the	student	to	easily	derive	simplified	logic	equations	from	minterms,	truth	tables,	and	state
tables.	This	relieves	the	student	of	some	of	the	more	tedious	computations	and	permits	the	solution	of	more	complex	design	problems	in	a	shorter	time.	LogicAid	also	provides	tutorial	help	for	Karnaugh	maps	and	derivation	of	state	graphs.	Several	of	the	units	include	simulation	or	laboratory	exercises.	These	exercises	provide	an	opportunity	to	design
a	logic	circuit	and	then	test	its	operation.	The	SimUaid	logic	simulator,	also	available	on	the	book’s	accompanying	CD,	may	be	used	to	verify	the	logic	designs.	The	lab	equipment	required	for	testing	either	can	be	a	breadboard	with	integrated	circuit	flip-flops	and	logic	gates	or	a	circuit	board	with	a	programmable	logic	device.	If	such	equipment	is	not
available,	the	lab	exercises	can	be	simulated	with	SimUaid	or	just	assigned	as	design	problems.	This	is	especially	important	for	Units	8,	16,	and	20	because	the	comprehensive	design	problems	in	these	units	help	to	review	and	tie	together	the	material	in	several	of	the	preceding	units.	The	DirectVHDL	software	on	the	CD	provides	a	quick	way	to	check
and	simulate	VHDL	descriptions	of	hardware.	This	software	checks	the	syntax	of	the	VHDL	code	as	it	is	typed	in	so	that	most	syntax	errors	can	be	corrected	before	the	simulation	phase.	Changes	from	Previous	Editions	The	text	has	evolved	considerably	since	the	fifth	edition.	Programmable	logic	and	the	VHDL	hardware	description	language	were
added,	and	an	emphasis	was	placed	on	the	role	of	simulation	and	computer-aided	design	of	logic	circuits.	The	discussion	of	VHDL,	hazards,	latches	and	one-hot	state	assignments	was	expanded.	Numerous	problems	were	added.	Several	additional	changes	have	been	made	for	the	seventh	edition.	The	discussion	of	number	systems	was	reorganized	so
that	one’s	complement	number	systems	can	be	easily	omitted.	In	the	unit	on	Boolean	algebra,	the	laws	of	switching	algebra	are	first	derived	using	switch	networks	and	truth	tables;	these	are	used	to	define	Boolean	algebra	and,	then,	further	theorems	of	Boolean	algebra	are	derived	that	are	useful	in	simplifying	switching	algebra	expressions.	The
discussion	of	adders	is	expanded	to	include	carry-lookahead	adders.	Alternative	implementations	of	multiplexers	are	included	and	also	a	discussion	of	active	high	and	active	low	signals.	Other	types	of	gated	latches	are	discussed,	and	a	brief	introduction	to	asynchronous	sequential	circuits	is	included.	There	is	more	discussion	of	incompletely	specified
state	tables	and	how	they	may	occur,	and	reducing	incompletely	specified	state	tables	is	briefly	discussed.	Problems	have	been	added	throughout	the	book	with	an	emphasis	on	more	challenging	problems	than	the	typical	exercises.	In	addition,	the	logic	design	and	simulation	software	that	accompanies	the	text	has	been	updated	and	improved.	Preface
xxi	Acknowledgments	To	be	effective,	a	book	designed	for	self-study	cannot	simply	be	written.	It	must	be	tested	and	revised	many	times	to	achieve	its	goals.	We	wish	to	express	our	appreciation	to	the	many	professors,	proctors,	and	students	who	participated	in	this	process.	Special	thanks	go	to	Dr.	David	Brown,	who	helped	teach	the	self-paced
course,	and	who	made	many	helpful	suggestions	for	improving	the	fifth	edition.	Special	thanks	to	graduate	teaching	assistant,	Mark	Story,	who	developed	many	new	problems	and	solutions	for	the	fifth	edition	and	who	offered	many	suggestions	for	improving	the	consistency	and	clarity	of	the	presentation.	The	authors	especially	thank	the	most	recent
reviewers	of	the	text.	Among	others,	they	are	Clark	Guest,	University	of	California,	San	Diego	Jayantha	Herath,	St	Cloud	State	University	Nagarajan	Kandasamy,	Drexel	University	Avinash	Karanth	Kodi,	Ohio	University	Jacob	Savir,	Newark	College	of	Engineering	Melissa	C.	Smith,	Clemson	University	Larry	M.	Stephens,	University	of	South	Carolina
Feedback	from	the	readers,	both	critical	and	appreciative,	is	welcome.	Please	send	your	comments,	concerns,	and	suggestions	to		Charles	H.	Roth,	Jr.	Larry	L.	Kinney	How	to	Use	This	Book	for	Self-Study	If	you	wish	to	learn	all	of	the	material	in	this	text	to	mastery	level,	the	following	study	procedures	are	recommended	for	each	unit:
1.	2.	3.	4.	5.	6.	Read	the	Objectives	of	the	unit.	These	objectives	provide	a	concise	summary	of	what	you	should	be	able	to	do	when	you	complete	studying	the	unit.	Work	through	the	Study	Guide.	After	reading	each	section	of	the	text,	write	out	the	answers	to	the	corresponding	study	guide	questions.	In	many	cases,	blank	spaces	are	left	in	the	study
guide	so	that	you	can	write	your	answers	directly	in	this	book.	By	doing	this,	you	will	have	the	answers	conveniently	available	for	later	review.	The	study	guide	questions	generally	will	help	emphasize	some	of	the	important	points	in	each	section	or	will	guide	you	to	a	better	understanding	of	some	of	the	more	difficult	points.	If	you	cannot	answer	some
of	the	study	guide	questions,	this	indicates	that	you	need	to	study	the	corresponding	section	in	the	text	more	before	proceeding.	The	answers	to	selected	study	guide	questions	are	given	in	the	back	of	this	book;	answers	to	the	remaining	questions	generally	can	be	found	within	the	text.	Several	of	the	units	(Units	3,	5,	6,	11,	13,	14,	and	18)	contain	one
or	more	programmed	exercises.	Each	programmed	exercise	will	guide	you	step-by-step	through	the	solution	of	one	of	the	more	difficult	types	of	problems	encountered	in	this	text.	When	working	through	a	programmed	exercise,	be	sure	to	write	down	your	answer	for	each	part	in	the	space	provided	before	looking	at	the	answer	and	continuing	with	the
next	part	of	the	exercise.	Work	the	assigned	Problems	at	the	end	of	the	unit.	Check	your	answers	against	those	at	the	end	of	the	book	and	rework	any	problems	that	you	missed.	Reread	the	Objectives	of	the	unit	to	make	sure	that	you	can	meet	all	of	them.	If	in	doubt,	review	the	appropriate	sections	of	the	text.	If	you	are	using	this	text	in	a	self-paced
course,	you	will	need	to	pass	a	readiness	test	on	each	unit	before	proceeding	with	the	next	unit.	The	purpose	of	the	readiness	test	is	to	make	sure	that	you	have	mastered	the	objectives	of	one	unit	before	moving	on	to	the	next	unit.	The	questions	on	the	test	will	relate	directly	to	the	objectives	of	the	unit,	so	that	if	you	have	worked	through	the	study
guide	and	written	out	answers	to	all	of	the	study	guide	questions	and	to	the	problems	assigned	in	the	study	guide,	you	should	have	no	difficulty	passing	the	test.	xxii	www.allitebooks.com	About	the	Authors	Charles	H.	Roth,	Jr.	is	Professor	Emeritus	of	Electrical	and	Computer	Engineering	at	the	University	of	Texas	at	Austin.	He	has	been	on	the	UT
faculty	since	1961.	He	received	his	BSEE	degree	from	the	University	of	Minnesota,	his	MSEE	and	EE	degrees	from	the	Massachusetts	Institute	of	Technology,	and	his	PhD	degree	in	EE	from	Stanford	University.	His	teaching	and	research	interests	included	logic	design,	digital	systems	design,	switching	theory,	microprocessor	systems,	and
computeraided	design.	He	developed	a	self-paced	course	in	logic	design	which	formed	the	basis	of	his	textbook,	Fundamentals	of	Logic	Design.	He	is	also	the	author	of	Digital	Systems	Design	Using	VHDL,	two	other	textbooks,	and	several	software	packages.	He	is	the	author	or	co-author	of	more	than	50	technical	papers	and	reports.	Six	PhD	students
and	80	MS	students	have	received	their	degrees	under	his	supervision.	He	received	several	teaching	awards	including	the	1974	General	Dynamics	Award	for	Outstanding	Engineering	Teaching.	Larry	L.	Kinney	is	Professor	Emeritus	in	Electrical	and	Computer	Engineering	at	the	University	of	Minnesota	Twin	Cities.	He	received	the	BS,	MS,	and	PhD	in
Electrical	Engineering	from	the	University	of	Iowa	in	1964,	1965,	and	1968,	respectively,	and	joined	the	University	of	Minnesota	in	1968.	He	has	taught	a	wide	variety	of	courses	including	logic	design,	microprocessor/microcomputer	systems,	computer	design,	switching	theory,	communication	systems	and	error-correcting	codes.	His	major	areas	of
research	interest	are	testing	of	digital	systems,	built-in	self-test,	computer	design,	microprocessor-based	systems,	and	error-correcting	codes.	xxiii	UNIT	Introduction	Number	Systems	and	Conversion	1	Objectives	1.	Introduction	The	first	part	of	this	unit	introduces	the	material	to	be	studied	later.	In	addition	to	getting	an	overview	of	the	material	in
the	first	part	of	the	course,	you	should	be	able	to	explain	a.	The	difference	between	analog	and	digital	systems	and	why	digital	systems	are	capable	of	greater	accuracy	b.	The	difference	between	combinational	and	sequential	circuits	c.	Why	two-valued	signals	and	binary	numbers	are	commonly	used	in	digital	systems	2.	Number	systems	and
conversion	When	you	complete	this	unit,	you	should	be	able	to	solve	the	following	types	of	problems:	a.	Given	a	positive	integer,	fraction,	or	mixed	number	in	any	base	(2	through	16);	convert	to	any	other	base.	Justify	the	procedure	used	by	using	a	power	series	expansion	for	the	number.	b.	Add,	subtract,	multiply,	and	divide	positive	binary	numbers.
Explain	the	addition	and	subtraction	process	in	terms	of	carries	and	borrows.	c.	Write	negative	binary	numbers	in	sign	and	magnitude,	1’s	complement,	and	2’s	complement	forms.	Add	signed	binary	numbers	using	1’s	complement	and	2’s	complement	arithmetic.	Justify	the	methods	used.	State	when	an	overflow	occurs.	d.	Represent	a	decimal	number
in	binary-coded-decimal	(BCD),	6-3-1-1	code,	excess-3	code,	etc.	Given	a	set	of	weights,	construct	a	weighted	code.	1	2	Unit	1	Study	Guide	1.	Study	Section	1.1,	Digital	Systems	and	Switching	Circuits,	and	answer	the	following	study	questions:	(a)	What	is	the	basic	difference	between	analog	and	digital	systems?	(b)	Why	are	digital	systems	capable	of
greater	accuracy	than	analog	systems?	(c)	Explain	the	difference	between	combinational	and	sequential	switching	circuits.	(d)	What	common	characteristic	do	most	switching	devices	used	in	digital	systems	have?	(e)	Why	are	binary	numbers	used	in	digital	systems?	2.	Study	Section	1.2,	Number	Systems	and	Conversion.	Answer	the	following	study
questions	as	you	go	along:	(a)	Is	the	first	remainder	obtained	in	the	division	method	for	base	conversion	the	most	or	least	significant	digit?	(b)	Work	through	all	of	the	examples	in	the	text	as	you	encounter	them	and	make	sure	that	you	understand	all	of	the	steps.	(c)	An	easy	method	for	conversion	between	binary	and	hexadecimal	is	illustrated	in
Equation	(1-1).	Why	should	you	start	forming	the	groups	of	four	bits	at	the	binary	point	instead	of	the	left	end	of	the	number?	(d)	Why	is	it	impossible	to	convert	a	decimal	number	to	binary	on	a	digit-by-digit	basis	as	can	be	done	for	hexadecimal?	Number	Systems	and	Conversion	3	(e)	Complete	the	following	conversion	table.	Binary	(base	2)	0	1	10	11
100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111	10000	Octal	(base	8)	0	Decimal	(base	10)	0	Hexadecimal	(base	16)	0	20	16	10	(f)	Work	Problems	1.1,	1.2,	1.3,	and	1.4.	3.	Study	Section	1.3,	Binary	Arithmetic.	(a)	Make	sure	that	you	can	follow	all	of	the	examples,	especially	the	propagation	of	borrows	in	the	subtraction	process.	(b)	To
make	sure	that	you	understand	the	borrowing	process,	work	out	a	detailed	analysis	in	terms	of	powers	of	2	for	the	following	example:	1100	−	101	111	4.	Work	Problems	1.5,	1.6,	and	1.17(a).	5.	Study	Section	1.4,	Representation	of	Negative	Numbers.	(a)	In	digital	systems,	why	are	1’s	complement	and	2’s	complement	commonly	used	to	represent
negative	numbers	instead	of	sign	and	magnitude?	4	Unit	1	(b)	State	two	different	ways	of	forming	the	1’s	complement	of	an	n-bit	binary	number.	(c)	State	three	different	ways	of	forming	the	2’s	complement	of	an	n-bit	binary	number.	(d)	If	the	word	length	is	n	=	4	bits	(including	sign),	what	decimal	number	does	10002	represent	in	sign	and
magnitude?	In	2’s	complement?	In	1’s	complement?	(e)	Given	a	negative	number	represented	in	2’s	complement,	how	do	you	find	its	magnitude?	Given	a	negative	number	represented	in	1’s	complement,	how	do	you	find	its	magnitude?	(f)	If	the	word	length	is	6	bits	(including	sign),	what	decimal	number	does	1000002	represent	in	sign	and
magnitude?	In	2’s	complement?	In	1’s	complement?	(g)	What	is	meant	by	an	overflow?	How	can	you	tell	that	an	overflow	has	occurred	when	performing	1’s	or	2’s	complement	addition?	Does	a	carry	out	of	the	last	bit	position	indicate	that	an	overflow	has	occurred?	Number	Systems	and	Conversion	5	(h)	Work	out	some	examples	of	1’s	and	2’s
complement	addition	for	various	combinations	of	positive	and	negative	numbers.	(i)	What	is	the	justification	for	using	the	end-around	carry	in	1’s	complement	addition?	(j)	The	one	thing	that	causes	the	most	trouble	with	2’s	complement	numbers	is	the	special	case	of	the	negative	number	which	consists	of	a	1	followed	by	all	0’s	(1000	.	.	.	000).	If	this
number	is	n	bits	long,	what	number	does	it	represent	and	why?	(It	is	not	negative	zero.)	(k)	Work	Problems	1.7	and	1.8.	6.	Study	Section	1.5,	Binary	Codes.	(a)	Represent	187	in	BCD	code,	excess-3	code,	6-3-1-1	code,	and	2-out-of-5	code.	(b)	Verify	that	the	6-3-1-1	code	is	a	weighted	code.	Note	that	for	some	decimal	digits,	two	different	code
combinations	could	have	been	used.	For	example,	either	0101	or	0110	could	represent	4.	In	each	case	the	combination	with	the	smaller	binary	value	has	been	used.	(c)	How	is	the	excess-3	code	obtained?	(d)	How	are	the	ASCII	codes	for	the	decimal	digits	obtained?	What	is	the	relation	between	the	ASCII	codes	for	the	capital	letters	and	lowercase
letters?	(e)	Work	Problem	1.9.	7.	If	you	are	taking	this	course	on	a	self-paced	basis,	you	will	need	to	pass	a	readiness	test	on	this	unit	before	going	on	to	the	next	unit.	The	purpose	of	the	readiness	test	is	to	determine	if	you	have	mastered	the	material	in	this	unit	and	are	ready	to	go	on	to	the	next	unit.	Before	you	take	the	readiness	test:	(a)	Check	your
answers	to	the	problems	against	those	provided	at	the	end	of	this	book.	If	you	missed	any	of	the	problems,	make	sure	that	you	understand	why	your	answer	is	wrong	and	correct	your	solution.	(b)	Make	sure	that	you	can	meet	all	of	the	objectives	listed	at	the	beginning	of	this	unit.	Introduction	Number	Systems	and	Conversion	1.1	Digital	Systems	and
Switching	Circuits	Digital	systems	are	used	extensively	in	computation	and	data	processing,	control	systems,	communications,	and	measurement.	Because	digital	systems	are	capable	of	greater	accuracy	and	reliability	than	analog	systems,	many	tasks	formerly	done	by	analog	systems	are	now	being	performed	digitally.	In	a	digital	system,	the	physical
quantities	or	signals	can	assume	only	discrete	values,	while	in	analog	systems	the	physical	quantities	or	signals	may	vary	continuously	over	a	specified	range.	For	example,	the	output	voltage	of	a	digital	system	might	be	constrained	to	take	on	only	two	values	such	as	0	volts	and	5	volts,	while	the	output	voltage	from	an	analog	system	might	be	allowed
to	assume	any	value	in	the	range	−10	volts	to	+10	volts.	Because	digital	systems	work	with	discrete	quantities,	in	many	cases	they	can	be	designed	so	that	for	a	given	input,	the	output	is	exactly	correct.	For	example,	if	we	multiply	two	5-digit	numbers	using	a	digital	multiplier,	the	10-digit	product	will	be	correct	in	all	10	digits.	On	the	other	hand,	the
output	of	an	analog	multiplier	might	have	an	error	ranging	from	a	fraction	of	one	percent	to	a	few	percent	depending	on	the	accuracy	of	the	components	used	in	construction	of	the	multiplier.	Furthermore,	if	we	need	a	product	which	is	correct	to	20	digits	rather	than	10,	we	can	redesign	the	digital	multiplier	to	process	more	digits	and	add	more	digits
to	its	input.	A	similar	improvement	in	the	accuracy	of	an	analog	multiplier	would	not	be	possible	because	of	limitations	on	the	accuracy	of	the	components.	The	design	of	digital	systems	may	be	divided	roughly	into	three	parts—system	design,	logic	design,	and	circuit	design.	System	design	involves	breaking	the	overall	system	into	subsystems	and
specifying	the	characteristics	of	each	subsystem.	For	example,	the	system	design	of	a	digital	computer	could	involve	specifying	the	number	and	type	of	memory	units,	arithmetic	units,	and	input-output	devices	as	well	as	the	interconnection	and	control	of	these	subsystems.	Logic	design	involves	determining	how	to	interconnect	basic	logic	building
blocks	to	perform	a	specific	function.	An	example	of	logic	design	is	determining	the	interconnection	of	logic	gates	and	flip-flops	required	to	perform	binary	addition.	Circuit	design	involves	specifying	the	interconnection	of	specific	components	such	as	resistors,	diodes,	and	transistors	6	Number	Systems	and	Conversion	7	FIGURE	1-1	Switching	Circuit
Inputs	Xm	...	©	Cengage	Learning	2014	X1	X2	Switching	Circuit	...	to	form	a	gate,	flip-flop,	or	other	logic	building	block.	Most	contemporary	circuit	design	is	done	in	integrated	circuit	form	using	appropriate	computer-aided	design	tools	to	lay	out	and	interconnect	the	components	on	a	chip	of	silicon.	This	book	is	largely	devoted	to	a	study	of	logic
design	and	the	theory	necessary	for	understanding	the	logic	design	process.	Some	aspects	of	system	design	are	treated	in	Units	18	and	20.	Circuit	design	of	logic	gates	is	discussed	briefly	in	Appendix	A.	Many	of	a	digital	system’s	subsystems	take	the	form	of	a	switching	circuit	(Figure	1-1).	A	switching	circuit	has	one	or	more	inputs	and	one	or	more
outputs	which	take	on	discrete	values.	In	this	text,	we	will	study	two	types	of	switching	circuits—combinational	and	sequential.	In	a	combinational	circuit,	the	output	values	depend	only	on	the	present	value	of	the	inputs	and	not	on	past	values.	In	a	sequential	circuit,	the	outputs	depend	on	both	the	present	and	past	input	values.	In	other	words,	in
order	to	determine	the	output	of	a	sequential	circuit,	a	sequence	of	input	values	must	be	specified.	The	sequential	circuit	is	said	to	have	memory	because	it	must	“remember”	something	about	the	past	sequence	of	inputs,	while	a	combinational	circuit	has	no	memory.	In	general,	a	sequential	circuit	is	composed	of	a	combinational	circuit	with	added
memory	elements.	Combinational	circuits	are	easier	to	design	than	sequential	circuits	and	will	be	studied	first.	Z1	Z2	Outputs	Zn	The	basic	building	blocks	used	to	construct	combinational	circuits	are	logic	gates.	The	logic	designer	must	determine	how	to	interconnect	these	gates	in	order	to	convert	the	circuit	input	signals	into	the	desired	output
signals.	The	relationship	between	these	input	and	output	signals	can	be	described	mathematically	using	Boolean	algebra.	Units	2	and	3	of	this	text	introduce	the	basic	laws	and	theorems	of	Boolean	algebra	and	show	how	they	can	be	used	to	describe	the	behavior	of	circuits	of	logic	gates.	Starting	from	a	given	problem	statement,	the	first	step	in
designing	a	combinational	logic	circuit	is	to	derive	a	table	or	the	algebraic	logic	equations	which	describe	the	circuit	outputs	as	a	function	of	the	circuit	inputs	(Unit	4).	In	order	to	design	an	economical	circuit	to	realize	these	output	functions,	the	logic	equations	which	describe	the	circuit	outputs	generally	must	be	simplified.	Algebraic	methods	for
this	simplification	are	described	in	Unit	3,	and	other	simplification	methods	(Karnaugh	map	and	Quine-McCluskey	procedure)	are	introduced	in	Units	5	and	6.	Implementation	of	the	simplified	logic	equations	using	several	types	of	gates	is	described	in	Unit	7,	and	alternative	design	procedures	using	programmable	logic	devices	are	developed	in	Unit	9.
The	basic	memory	elements	used	in	the	design	of	sequential	circuits	are	called	flip-flops	(Unit	11).	These	flip-flops	can	be	interconnected	with	gates	to	form	counters	and	registers	(Unit	12).	Analysis	of	more	general	sequential	circuits	using	timing	8	Unit	1	diagrams,	state	tables,	and	graphs	is	presented	in	Unit	13.	The	first	step	in	designing	a
sequential	switching	circuit	is	to	construct	a	state	table	or	graph	which	describes	the	relationship	between	the	input	and	output	sequences	(Unit	14).	Methods	for	going	from	a	state	table	or	graph	to	a	circuit	of	gates	and	flip-flops	are	developed	in	Unit	15.	Methods	of	implementing	sequential	circuits	using	programmable	logic	are	discussed	in	Unit
16.	In	Unit	18,	combinational	and	sequential	design	techniques	are	applied	to	the	realization	of	systems	for	performing	binary	addition,	multiplication,	and	division.	The	sequential	circuits	designed	in	this	text	are	called	synchronous	sequential	circuits	because	they	use	a	common	timing	signal,	called	a	clock,	to	synchronize	the	operation	of	the
memory	elements.	Use	of	a	hardware	description	language,	VHDL,	in	the	design	of	combinational	logic,	sequential	logic,	and	digital	systems	is	introduced	in	Units	10,	17,	and	20.	VHDL	is	used	to	describe,	simulate,	and	synthesize	digital	hardware.	After	writing	VHDL	code,	the	designer	can	use	computer-aided	design	software	to	compile	the
hardware	description	and	complete	the	design	of	the	digital	logic.	This	allows	the	completion	of	complex	designs	without	having	to	manually	work	out	detailed	circuit	descriptions	in	terms	of	gates	and	flip-flops.	The	switching	devices	used	in	digital	systems	are	generally	two-state	devices,	that	is,	the	output	can	assume	only	two	different	discrete
values.	Examples	of	switching	devices	are	relays,	diodes,	and	transistors.	A	relay	can	assume	two	states—closed	or	open—depending	on	whether	power	is	applied	to	the	coil	or	not.	A	diode	can	be	in	a	conducting	state	or	a	nonconducting	state.	A	transistor	can	be	in	a	cut-off	or	saturated	state	with	a	corresponding	high	or	low	output	voltage.	Of	course,
transistors	can	also	be	operated	as	linear	amplifiers	with	a	continuous	range	of	output	voltages,	but	in	digital	applications	greater	reliability	is	obtained	by	operating	them	as	twostate	devices.	Because	the	outputs	of	most	switching	devices	assume	only	two	different	values,	it	is	natural	to	use	binary	numbers	internally	in	digital	systems.	For	this	reason
binary	numbers	and	number	systems	will	be	discussed	first	before	proceeding	to	the	design	of	switching	circuits.	1.2	Number	Systems	and	Conversion	When	we	write	decimal	(base	10)	numbers,	we	use	a	positional	notation;	each	digit	is	multiplied	by	an	appropriate	power	of	10	depending	on	its	position	in	the	number.	For	example,	953.7810	=	9	×
102	+	5	×	101	+	3	×	100	+	7	×	10	−1	+	8	×	10	−2	Similarly,	for	binary	(base	2)	numbers,	each	binary	digit	is	multiplied	by	the	appropriate	power	of	2:	1011.112	=	1	×	23	+	0	×	22	+	1	×	21	+	1	×	20	+	1	×	2	−1	+	1	×	2	−2	=	8	+	0	+	2	+	1	+	12	+	14	=	1134	=	11.7510	www.allitebooks.com	Number	Systems	and	Conversion	9	Note	that	the	binary
point	separates	the	positive	and	negative	powers	of	2	just	as	the	decimal	point	separates	the	positive	and	negative	powers	of	10	for	decimal	numbers.	Any	positive	integer	R	(R	>	1)	can	be	chosen	as	the	radix	or	base	of	a	number	system.	If	the	base	is	R,	then	R	digits	(0,	1,	.	.	.	,	R	−	1)	are	used.	For	example,	if	R	=	8,	then	the	required	digits	are	0,	1,	2,
3,	4,	5,	6,	and	7.	A	number	written	in	positional	notation	can	be	expanded	in	a	power	series	in	R.	For	example,	N	=	(a4	a3	a2	a1a0	.	a	−1a	−2	a	−3)R	=	a4	×	R4	+	a3	×	R3	+	a2	×	R2	+	a1	×	R1	+	a0	×	R0	+	a	−1	×	R	−1	+	a	−2	×	R	−2	+	a	−3	×	R	−3	where	ai	is	the	coefficient	of	Ri	and	0	≤	ai	≤	R	−	1.	If	the	arithmetic	indicated	in	the	power	series
expansion	is	done	in	base	10,	then	the	result	is	the	decimal	equivalent	of	N.	For	example,	147.38	=	1	×	82	+	4	×	81	+	7	×	80	+	3	×	8	−1	=	64	+	32	+	7	+	=	103.37510	3	8	The	power	series	expansion	can	be	used	to	convert	to	any	base.	For	example,	converting	14710	to	base	3	would	be	written	as	14710	=	1	×	(101)2	+	(11)	×	(101)1	+	(21)	×	(101)0
where	all	the	numbers	on	the	right-hand	side	are	base	3	numbers.	(Note:	In	base	3,	10	is	101,	7	is	21,	etc.)	To	complete	the	conversion,	base	3	arithmetic	would	be	used.	Of	course,	this	is	not	very	convenient	if	the	arithmetic	is	being	done	by	hand.	Similarly,	if	14710	is	being	converted	to	binary,	the	calculation	would	be	14710	=	1	×	(1010)2	+	(100)	×
(1010)1	+	(111)	×	(1010)0	Again	this	is	not	convenient	for	hand	calculation	but	it	could	be	done	easily	in	a	computer	where	the	arithmetic	is	done	in	binary.	For	hand	calculation,	use	the	power	series	expansion	when	converting	from	some	base	into	base	10.	For	bases	greater	than	10,	more	than	10	symbols	are	needed	to	represent	the	digits.	In	this
case,	letters	are	usually	used	to	represent	digits	greater	than	9.	For	example,	in	hexadecimal	(base	16),	A	represents	1010,	B	represents	1110,	C	represents	1210,	D	represents	1310,	E	represents	1410,	and	F	represents	1510.	Thus,	A2F16	=	10	×	162	+	2	×	161	+	15	×	160	=	2560	+	32	+	15	=	260710	Next,	we	will	discuss	conversion	of	a	decimal
integer	to	base	R	using	the	division	method.	The	base	R	equivalent	of	a	decimal	integer	N	can	be	represented	as	N	=	(an	an−1	·	·	·	a2	a1	a0)R	=	an	Rn	+	an−1Rn−1	+	·	·	·	+	a2R2	+	a1R1	+	a0	10	Unit	1	If	we	divide	N	by	R,	the	remainder	is	a0:	N	=	an	Rn−1	+	an−1Rn−2	+	·	·	·	+	a2	R1	+	a1	=	Q1,	remainder	a0	R	Then	we	divide	the	quotient	Q1	by	R:
Q1	=	an	Rn−2	+	an−1Rn−3	+	·	·	·	+	a3	R1	+	a2	=	Q2,	remainder	a1	R	Next	we	divide	Q2	by	R:	Q2	=	an	Rn−3	+	an−1Rn−4	+	·	·	·	+	a3	=	Q3,	remainder	a2	R	This	process	is	continued	until	we	finally	obtain	an.	Note	that	the	remainder	obtained	at	each	division	step	is	one	of	the	desired	digits	and	the	least	significant	digit	is	obtained	first.	Example
Convert	5310	to	binary.	2	y53	2	y26	2	y13	2	y6	2	y3	2	y1	0	rem.	rem.	rem.	rem.	rem.	rem.	=	=	=	=	=	=	1	=	a0	0	=	a1	1	=	a2	0	=	a3	1	=	a4	1	=	a5	5310	=	1101012	Conversion	of	a	decimal	fraction	to	base	R	can	be	done	using	successive	multiplications	by	R.	A	decimal	fraction	F	can	be	represented	as	F	=	(.a	−1	a	−2	a	−3	·	·	·	a	−m)R	=	a	−1R	−1	+	a
−2	R	−2	+	a	−3	R	−3	+	·	·	·	+	a	−m	R	−m	Multiplying	by	R	yields	FR	=	a	−1	+	a	−2	R	−1	+	a	−3	R	−2	+	·	·	·	+	a	−m	R	−m+1	=	a	−1	+	F1	where	F1	represents	the	fractional	part	of	the	result	and	a	−1	is	the	integer	part.	Multiplying	F1	by	R	yields	F1R	=	a	−2	+	a	−3	R	−1	+	·	·	·	+	a	−m	R	−m+2	=	a	−2	+	F2	Number	Systems	and	Conversion	11
Next,	we	multiply	F2	by	R:	F2R	=	a	−3	+	·	·	·	+	a	−m	R	−m+3	=	a	−3	+	F3	This	process	is	continued	until	we	have	obtained	a	sufficient	number	of	digits.	Note	that	the	integer	part	obtained	at	each	step	is	one	of	the	desired	digits	and	the	most	significant	digit	is	obtained	first.	Example	Convert	0.62510	to	binary.	F	=	.625	×	2	1.250	(a−1	=	1)	F1	=
.250	×	2	0.500	(a−2	=	0)	F2	=	.500	×	2	1.000	(a−3	=	1)	.62510	=	.1012	This	process	does	not	always	terminate,	but	if	it	does	not	terminate,	the	result	is	a	repeating	fraction.	Example	Convert	0.710	to	binary.	.7	2	(1).4	2	(0).8	2	(1).6	2	(1).2	2	(0).4	2	(0).8	⟵	process	starts	repeating	here	because	0.4	was	previously	obtained	0.710	=	0.1	0110	0110
0110	.	.	.	2	Conversion	between	two	bases	other	than	decimal	can	be	done	directly	by	using	the	procedures	given;	however,	the	arithmetic	operations	would	have	to	be	carried	out	using	a	base	other	than	10.	It	is	generally	easier	to	convert	to	decimal	first	and	then	convert	the	decimal	number	to	the	new	base.	12	Unit	1	Example	Convert	231.34	to
base	7.	231.34	=	2	×	16	+	3	×	4	+	1	+	34	=	45.7510	7	y45	7y	6	0	rem.	3	rem.	6	.75	7	(5)	.25	7	(1)	.75	7	(5)	.25	7	(1)	.75	45.7510	=	63.5151	.	.	.	7	Conversion	from	binary	to	hexadecimal	(and	conversely)	can	be	done	by	inspection	because	each	hexadecimal	digit	corresponds	to	exactly	four	binary	digits	(bits).	Starting	at	the	binary	point,	the	bits
are	divided	into	groups	of	four,	and	each	group	is	replaced	by	a	hexadecimal	digit:	('*	1101	('*	.	0101	('*	1100	('*	=	4D.5C16	1001101.0101112	=	0100	4	D	5	C	(1-1)	As	shown	in	Equation	(1-1),	extra	0’s	are	added	at	each	end	of	the	bit	string	as	needed	to	fill	out	the	groups	of	four	bits.	1.3	Binary	Arithmetic	Arithmetic	operations	in	digital	systems	are
usually	done	in	binary	because	design	of	logic	circuits	to	perform	binary	arithmetic	is	much	easier	than	for	decimal.	Binary	arithmetic	is	carried	out	in	much	the	same	manner	as	decimal,	except	the	addition	and	multiplication	tables	are	much	simpler.	The	addition	table	for	binary	numbers	is	0+0=0	0+1=1	1+0=1	1+1=0	and	carry	1	to	the	next
column	Carrying	1	to	a	column	is	equivalent	to	adding	1	to	that	column.	Number	Systems	and	Conversion	Example	13	Add	1310	and	1110	in	binary.	1	1	1	1	⟵	carries	1310	=	1101	1110	=	1011	11000	=	2410	The	subtraction	table	for	binary	numbers	is	0−0=0	0−1=1	1−0=1	1−1=0	and	borrow	1	from	the	next	column	Borrowing	1	from	a	column	is
equivalent	to	subtracting	1	from	that	column.	Examples	of	Binary	Subtraction	(a)	1←	(indicates	11101	a	borrrow	‒	10011	from	the	1010	3rd	column)	(b)	1	1	1	1←	borrows	10000	‒	11	1101	(c)	1	1	1←	borrows	111001	‒	1011	101110	Note	how	the	borrow	propagates	from	column	to	column	in	the	second	example.	In	order	to	borrow	1	from	the	second
column,	we	must	in	turn	borrow	1	from	the	third	column,	etc.	An	alternative	to	binary	subtraction	is	the	use	of	2’s	complement	arithmetic,	as	discussed	in	Section	1.4.	Binary	subtraction	sometimes	causes	confusion,	perhaps	because	we	are	so	used	to	doing	decimal	subtraction	that	we	forget	the	significance	of	the	borrowing	process.	Before	doing	a
detailed	analysis	of	binary	subtraction,	we	will	review	the	borrowing	process	for	decimal	subtraction.	If	we	number	the	columns	(digits)	of	a	decimal	integer	from	right	to	left	(starting	with	0),	and	then	we	borrow	1	from	column	n,	what	we	mean	is	that	we	subtract	1	from	column	n	and	add	10	to	column	n	−	1.	Because	1	×	10n	=	10	×	10n−1,	the
value	of	the	decimal	number	is	unchanged,	but	we	can	proceed	with	the	subtraction.	Consider,	for	example,	the	following	decimal	subtraction	problem:	column	2⟶	column	1	↙	205	−	18	187	14	Unit	1	A	detailed	analysis	of	the	borrowing	process	for	this	example,	indicating	first	a	borrow	of	1	from	column	1	and	then	a	borrow	of	1	from	column	2,	is	as
follows:	205	−	18	=	[2	×	102	+	0	×	101	+	5	×	100]	1	×	101	+	8	×	100]	−[note	borrow	from	column	1	=	[2	×	102	+	(0	−	1)	×	101	+	(10	+	5)	×	100]	1	×	101	+	8	×	100]	−[note	borrow	from	column	2	=	−	=	[(2	−	1)	×	102	+	(10	+	0	−	1)	×	101	+	15	×	100]	[1	×	101	+	8	×	100]	[1	×	102	+	8	×	101	+	7	×	100]	=	187	The	analysis	of	borrowing	for
binary	subtraction	is	exactly	the	same,	except	that	we	work	with	powers	of	2	instead	of	powers	of	10.	Thus	for	a	binary	number,	borrowing	1	from	column	n	is	equivalent	to	subtracting	1	from	column	n	and	adding	2	(102)	to	column	n	−	1.	The	value	of	the	binary	number	is	unchanged	because	1	×	2n	=	2	×	2n−1.	A	detailed	analysis	of	binary
subtraction	example	(c)	follows.	Starting	with	the	rightmost	column,	1	−	1	=	0.	To	subtract	in	the	second	column,	we	must	borrow	from	the	third	column.	Rather	than	borrow	immediately,	we	place	a	1	over	the	third	column	to	indicate	that	a	borrow	is	necessary,	and	we	will	actually	do	the	borrowing	when	we	get	to	the	third	column.	(This	is	similar	to
the	way	borrow	signals	might	propagate	in	a	computer.)	Now	because	we	have	borrowed	1,	the	second	column	becomes	10,	and	10	−	1	=	1.	In	order	to	borrow	1	from	the	third	column,	we	must	borrow	1	from	the	fourth	column	(indicated	by	placing	a	1	over	column	4).	Column	3	then	becomes	10,	subtracting	off	the	borrow	yields	1,	and	1	−	0	=	1.
Now	in	column	4,	we	subtract	off	the	borrow	leaving	0.	In	order	to	complete	the	subtraction,	we	must	borrow	from	column	5,	which	gives	10	in	column	4,	and	10	−	1	=	1.	The	multiplication	table	for	binary	numbers	is	0×	0×	1×	1×	0=	1=	0=	1=	0	0	0	1	The	following	example	illustrates	multiplication	of	1310	by	1110	in	binary:	1101	1011	1101	1101
0000	1101	10001111	=	14310	Number	Systems	and	Conversion	15	Note	that	each	partial	product	is	either	the	multiplicand	(1101)	shifted	over	the	appropriate	number	of	places	or	is	zero.	When	adding	up	long	columns	of	binary	numbers,	the	sum	of	the	bits	in	a	single	column	can	exceed	112,	and	therefore	the	carry	to	the	next	column	can	be	greater
than	1.	For	example,	if	a	single	column	of	bits	contains	five	1’s,	then	adding	up	the	1’s	gives	1012,	which	means	that	the	sum	bit	for	that	column	is	1,	and	the	carry	to	the	next	column	is	102.	When	doing	binary	multiplication,	a	common	way	to	avoid	carries	greater	than	1	is	to	add	in	the	partial	products	one	at	a	time	as	illustrated	by	the	following
example:	1111	1101	1111	0000	(01111)	1111	(1001011)	1111	11000011	multiplicand	multiplier	first	partial	product	second	partial	product	sum	of	first	two	partial	products	third	partial	product	sum	after	adding	third	partial	product	fourth	partial	product	final	product	(sum	after	adding	fourth	partial	product)	The	following	example	illustrates	division
of	14510	by	1110	in	binary:	1101	1011	1001001	1011	1110	1011	1101	1011	10	∣	The	quotient	is	1101	with	a	remainder	of	10.	Binary	division	is	similar	to	decimal	division,	except	it	is	much	easier	because	the	only	two	possible	quotient	digits	are	0	and	1.	In	the	above	example,	if	we	start	by	comparing	the	divisor	(1011)	with	the	upper	four	bits	of	the
dividend	(1001),	we	find	that	we	cannot	subtract	without	a	negative	result,	so	we	move	the	divisor	one	place	to	the	right	and	try	again.	This	time	we	can	subtract	1011	from	10010	to	give	111	as	a	result,	so	we	put	the	first	quotient	bit	of	1	above	10010.	We	then	bring	down	the	next	dividend	bit	(0)	to	get	1110	and	shift	the	divisor	right.	We	then
subtract	1011	from	1110	to	get	11,	so	the	second	quotient	bit	is	1.	When	we	bring	down	the	next	dividend	bit,	the	result	is	110,	and	we	cannot	subtract	the	shifted	divisor,	so	the	third	quotient	bit	is	0.	We	then	bring	down	the	last	dividend	bit	and	subtract	1011	from	1101	to	get	a	final	remainder	of	10,	and	the	last	quotient	bit	is	1.	16	Unit	1	1.4
Representation	of	Negative	Numbers	Up	to	this	point	we	have	been	working	with	unsigned	positive	numbers.	The	most	common	methods	for	representing	both	positive	and	negative	numbers	are	sign	and	magnitude,	2’s	complement,	and	1’s	complement.	In	each	of	these	methods,	the	leftmost	bit	of	a	number	is	0	for	positive	numbers	and	1	for
negative	numbers.	As	discussed	below,	if	n	bits	are	used	to	represent	numbers,	then	the	sign	and	magnitude	and	1’s	complement	methods	represent	numbers	in	the	range	−(2(n−1)	−	1)	to	+(2(n−1)	−	1)	and	both	have	two	representations	for	0,	a	positive	0	and	a	negative	0.	In	2’s	complement,	numbers	in	the	range	−2(n−1)	to	+(2(n−1)	−	1)	are
represented	and	there	is	only	a	positive	0.	If	an	operation,	such	as	addition	or	subtraction,	is	performed	on	two	numbers	and	the	result	is	outside	the	range	of	representation,	then	we	say	that	an	overflow	has	occurred.	Sign	and	Magnitude	Numbers	In	an	n-bit	sign	and	magnitude	system,	a	number	is	represented	by	a	sign	bit,	0	for	positive	and	1	for
negative,	followed	by	n	−	1	bits	that	represent	the	magnitude	of	the	number.	With	n	−	1	bits	the	magnitude	can	be	0	to	2(n−1)	−	1.	With	the	sign	bit,	numbers	in	the	range	−(2(n−1)	−	1)	to	+(2(n−1)	−	1)	are	represented	including	a	positive	and	negative	0.	This	is	illustrated	in	Table	1-1	for	n	=	4.	For	example,	0011	represents	+3	and	1011
represents	−3.	Note	that	1000	represents	minus	0.	Designing	logic	circuits	to	perform	arithmetic	on	sign	and	magnitude	binary	numbers	is	awkward.	One	method	is	to	convert	the	numbers	into	2’s	(or	1’s)	complement	and,	after	performing	the	arithmetic	operation,	convert	the	result	back	to	sign	and	magnitude.	TABLE	1-1	Signed	Binary	Integers
(word	length:	n	=	4)	©	Cengage	Learning	2014	+N	+0	+1	+2	+3	+4	+5	+6	+7	Positive	Integers	(all	systems)	0000	0001	0010	0011	0100	0101	0110	0111	Negative	Integers	−N	−0	−1	−2	−3	−4	−5	−6	−7	−8	Sign	and	Magnitude	1000	1001	1010	1011	1100	1101	1110	1111	——	2’s	Complement	N*	——	1111	1110	1101	1100	1011	1010	1001	1000
1’s	Complement	N	1111	1110	1101	1100	1011	1010	1001	1000	——	2’s	Complement	Numbers	In	the	2’s	complement	number	system,	a	positive	number,	N,	is	represented	by	a	0	followed	by	the	magnitude	of	N	as	in	the	sign	and	magnitude	system;	however,	Number	Systems	and	Conversion	17	a	negative	number,	−N,	is	represented	by	its	2’s
complement,	N*.	If	the	word	length	is	n	bits,	the	2’s	complement	of	a	positive	integer	N	is	defined	as	N*	=	2n	−	N	(1-2)	(Note	that	in	this	equation	all	numbers	N,	2n,	and	N*	are	treated	as	unsigned	positive	numbers;	if	they	are	expressed	in	binary,	n	+	1	bits	are	required	to	represent	2n.)	Table	1-1	shows	the	result	for	n	=	4.	In	Table	1-1,	the	2’s
complement	representation	of	negative	numbers	−1	through	−7	can	be	obtained	by	taking	the	2’s	complement	of	positive	numbers	1	through	7	(i.e.,	by	subtracting	from	16).	For	example,	the	2’s	complement	of	5	is	16	−	5	=	11	or,	using	binary	numbers,	(10000)	−	(0101)	=	(1011).	After	completing	the	subtractions,	all	combinations	of	4-bits	have	been
used	to	represent	the	numbers	−7,	.	.	.	,	−1,	0,	1,	.	.	.	7;	the	only	unused	combination	is	1000.	Since	the	leftmost	bit	of	1000	is	1,	it	should	be	a	negative	number.	To	determine	its	magnitude,	note	that	the	magnitude	of	a	negative	number	can	be	obtained	by	taking	its	2’s	complement;	that	is,	from	Equation	(1-2),	N	=	2n	−	N*	(1-3)	Applying	Equation	(1-
3)	to	1000	produces	(10000)	−	(1000)	=	(1000)	or,	in	decimal,	16	−	8	=	8.	Hence,	1000	represents	−8.	In	general,	in	an	n-bit	2’s	complement	system	the	number	1	followed	by	all	0’s	represents	−2(n−1).	Using	Equation	(1-2)	directly	on	binary	numbers	requires	subtraction	of	n	+	1	bit	numbers.	This	can	be	avoided	by	noting	that	Equation	(1-2)	can	be
written	as	N*	=	(2n	−	1	−	N)	+	1	In	binary,	2n	−	1	consists	of	n	1’s.	Subtracting	a	number	from	all	1’s	does	not	produce	any	borrows,	and	the	subtraction	can	be	done	by	replacing	0’s	with	1’s	and	1’s	with	0’s	(i.e.,	simply	complement	N	bit-by-bit).	For	example,	if	n	=	7	and	N	=	0101100,	2n	−	1	=	1111111	−	0101100	1010011	+	0000001	N*	=
1010100	N*	is	obtained	by	complementing	N	bit-by-bit	and	then	adding	1.	An	alternative	way	to	form	the	2’s	complement	of	N	is	to	start	at	the	right	and	leave	any	0’s	on	the	right	end	and	the	first	1	unchanged,	then	complement	all	bits	to	the	left	of	the	first	1.	In	the	preceding	example,	the	100	on	the	right	end	of	N	is	unchanged	while	the	0101	on	the
left	is	complemented	bit-by-bit.	Addition	of	2’s	Complement	Numbers	The	addition	of	n-bit	signed	binary	numbers	is	straightforward	using	the	2’s	complement	system.	The	addition	is	carried	out	just	as	if	all	the	numbers	were	positive,	and	any	carry	from	the	sign	position	is	ignored.	This	will	always	yield	the	correct	result	18	Unit	1	except	when	an
overflow	occurs.	When	the	word	length	is	n	bits,	we	say	that	an	overflow	has	occurred	if	the	correct	representation	of	the	sum	(including	sign)	requires	more	than	n	bits.	The	different	cases	which	can	occur	are	illustrated	below	for	n	=	4.	1.	Addition	of	two	positive	numbers,	sum	<	2n−1	+3	+4	+7	2.	0101	1010	1111	(correct	answer)	1011	0110
(1)0001	⟵	correct	answer	when	the	carry	from	the	sign	bit	is	ignored	(this	is	not	an	overflow)	Addition	of	two	negative	numbers,	0	sum	0	≤	2n−1	−3	−4	−7	6.	⟵	wrong	answer	because	of	overflow	(+11	requires	5	bits	including	sign)	Same	as	case	3	except	positive	number	has	greater	magnitude	+5	+6	+1	5.	0101	0110	1011	Addition	of	positive	and
negative	numbers	(negative	number	has	greater	magnitude)	−5	−6	−1	4.	(correct	answer)	Addition	of	two	positive	numbers,	sum	≥	2n−1	+5	+6	3.	0011	0100	0111	1101	1100	(1)1001	⟵	correct	answer	when	the	last	carry	is	ignored	(this	is	not	an	overflow)	Addition	of	two	negative	numbers,	0	sum	0	>	2n−1	−5	−6	1011	1010	(1)0101	⟵	wrong
answer	because	of	overflow	(−11	requires	5	bits	including	sign)	Note	that	an	overflow	condition	(cases	2	and	6)	is	easy	to	detect	because	in	case	2	the	addition	of	two	positive	numbers	yields	a	negative	result,	and	in	case	6	the	addition	of	two	negative	numbers	yields	a	positive	answer	(for	four	bits).	www.allitebooks.com	Number	Systems	and
Conversion	19	The	proof	that	throwing	away	the	carry	from	the	sign	bit	always	gives	the	correct	answer	follows	for	cases	4	and	5:	Case	4:	−A	+	B	(where	B	>	A)	A*	+	B	=	(2n	−	A)	+	B	=	2n	+	(B	−	A)	>	2n	Throwing	away	the	last	carry	is	equivalent	to	subtracting	2n,	so	the	result	is	(B	−	A),	which	is	correct.	Case	5:	−A	−	B	(where	A	+	B	≤	2n−1)	A*	+
B*	=	(2n	−	A)	+	(2n	−	B)	=	2n	+	2n	−	(A	+	B)	Discarding	the	last	carry	yields	2n	−	(A	+	B)	=	(A	+	B)*,	which	is	the	correct	representation	of	−(A	+	B).	1’s	Complement	Numbers	In	the	1’s	complement	system	a	negative	number,	−N,	is	represented	by	the	1’s	complement	of	N,	N,	defined	as	N	=	(2n	−	1)	−	N	(1-4)	As	explained	above,	(2n	−	1)	consists
of	all	1’s,	and	subtracting	a	bit	from	1	is	the	same	as	complementing	the	bit.	Hence,	the	1’s	complement	of	N	can	be	obtained	by	complementing	N	bit-by-bit.	Table	1-1	illustrates	1’s	complement	for	n	=	4.	Note	that	the	1’s	complement	of	0000	is	1111,	which	represents	minus	zero.	Note	that	1’s	complement	has	two	representations	of	0,	as	does	sign
and	magnitude.	Addition	of	1’s	Complement	Numbers	The	addition	of	1’s	complement	numbers	is	similar	to	2’s	complement	except	that	instead	of	discarding	the	last	carry,	it	is	added	to	the	n-bit	sum	in	the	position	furthest	to	the	right.	This	is	referred	to	as	an	end-around	carry.	The	addition	of	positive	numbers	is	the	same	as	illustrated	for	cases	1
and	2	under	2’s	complement.	The	remaining	cases	are	illustrated	below	(n	=	4).	3.	Addition	of	positive	and	negative	numbers	(negative	number	with	greater	magnitude)	+5	−6	−1	4.	0101	1001	1110	(correct	answer)	Same	as	case	3	except	positive	number	has	greater	magnitude	−5	+6	1010	0110	(1)	0000	1	0001	(end-around	carry)	(correct	answer,
no	overflow)	20	Unit	1	5.	Addition	of	two	negative	numbers,	0	sum	0	<	2n−1	−3	−4	6.	1100	1011	(1)	0111	1	1000	(end-around	carry)	(correct	answer,	no	overflow)	Addition	of	two	negative	numbers,	|sum|	≥	2n−1	−5	−6	1010	1001	(1)	0111	1	0100	(end-around	carry)	(wrong	answer	because	of	overflow)	Again,	note	that	the	overflow	in	case	6	is	easy
to	detect	because	the	addition	of	two	negative	numbers	yields	a	positive	result.	The	proof	that	the	end-around	carry	method	gives	the	correct	result	follows	for	cases	4	and	5:	Case	4:	−A	+	B	(where	B	>	A)	A	+	B	=	(2n	−	1	−	A)	+	B	=	2n	+	(B	−	A)	−	1	The	end-around	carry	is	equivalent	to	subtracting	2n	and	adding	1,	so	the	result	is	(B	−	A),	which	is
correct.	Case	5:	−A	−	B	(A	+	B	<	2n−1)	A	+	B	=	(2n	−	1	−	A)	+	(2n	−	1	−	B)	=	2n	+	[2n	−	1	−	(A	+	B)]	−	1	After	the	end-around	carry,	the	result	is	2n	−	1	−	(A	+	B)	=	(A	+	B)	which	is	the	correct	representation	for	−(A	+	B).	The	following	examples	illustrate	the	addition	of	1’s	and	2’s	complement	numbers	for	a	word	length	of	n	=	8:	1.	Add	−11
and	−20	in	1’s	complement.	+11	=	00001011	+20	=	00010100	taking	the	bit-by-bit	complement,	−11	is	represented	by	11110100	and	−20	by	11101011	11110100	(−11)	11101011	+(−20)	(1)	11011111	1	(end-around	carry)	11100000	=	−31	Number	Systems	and	Conversion	2.	21	Add	−8	and	+19	in	2’s	complement	+8	=	00001000	complementing
all	bits	to	the	left	of	the	first	1,	−8,	is	represented	by	11111000	11111000	(−8)	00010011	+19	(1)00001011	=	+11	(discard	last	carry)	Note	that	in	both	cases,	the	addition	produced	a	carry	out	of	the	furthest	left	bit	position,	but	there	is	no	overflow	because	the	answer	can	be	correctly	represented	by	eight	bits	(including	sign).	A	general	rule	for
detecting	overflow	when	adding	two	n-bit	signed	binary	numbers	(1’s	or	2’s	complement)	to	get	an	n-bit	sum	is:	An	overflow	occurs	if	adding	two	positive	numbers	gives	a	negative	answer	or	if	adding	two	negative	numbers	gives	a	positive	answer.	An	alternative	method	for	detecting	overflow	in	2’s	complement	addition	is	as	follows:	An	overflow
occurs	if	and	only	if	the	carry	out	of	the	sign	position	is	not	equal	to	the	carry	into	the	sign	position.	1.5	Binary	Codes	Although	most	large	computers	work	internally	with	binary	numbers,	the	inputoutput	equipment	generally	uses	decimal	numbers.	Because	most	logic	circuits	only	accept	two-valued	signals,	the	decimal	numbers	must	be	coded	in
terms	of	binary	signals.	In	the	simplest	form	of	binary	code,	each	decimal	digit	is	replaced	by	its	binary	equivalent.	For	example,	937.25	is	represented	by	9	3	7	.	2	5	C	0011	C	0111	C	.	0010	C	0101	C	1001	This	representation	is	referred	to	as	binary-coded-decimal	(BCD)	or	more	explicitly	as	8-4-2-1	BCD.	Note	that	the	result	is	quite	different	than	that
obtained	by	converting	the	number	as	a	whole	into	binary.	Because	there	are	only	ten	decimal	digits,	1010	through	1111	are	not	valid	BCD	codes.	22	Unit	1	TABLE	1-2	Binary	Codes	for	Decimal	Digits	©	Cengage	Learning	2014	Decimal	Digit	8-4-2-1	Code	(BCD)	6-3-1-1	Code	Excess-3	Code	2-out-of-5	Code	Gray	Code	0	1	2	3	4	5	6	7	8	9	0000	0001
0010	0011	0100	0101	0110	0111	1000	1001	0000	0001	0011	0100	0101	0111	1000	1001	1011	1100	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	00011	00101	00110	01001	01010	01100	10001	10010	10100	11000	0000	0001	0011	0010	0110	1110	1010	1011	1001	1000	Table	1-2	shows	several	possible	sets	of	binary	codes	for	the	ten
decimal	digits.	Many	other	possibilities	exist	because	the	only	requirement	for	a	valid	code	is	that	each	decimal	digit	be	represented	by	a	distinct	combination	of	binary	digits.	To	translate	a	decimal	number	to	coded	form,	each	decimal	digit	is	replaced	by	its	corresponding	code.	Thus	937	expressed	in	excess-3	code	is	1100	0110	1010.	The	8-4-2-1
(BCD)	code	and	the	6-3-1-1	code	are	examples	of	weighted	codes.	A	4-bit	weighted	code	has	the	property	that	if	the	weights	are	w3,	w2,	w1,	and	w0,	the	code	a3a2a1a0	represents	a	decimal	number	N,	where	N	=	w3	a3	+	w2	a2	+	w1a1	+	w0	a0	For	example,	the	weights	for	the	6-3-1-1	code	are	w3	=	6,	w2	=	3,	w1	=	1,	and	w0	=	1.	The	binary	code
1011	thus	represents	the	decimal	digit	N	=	6·1	+	3·0	+	1·1	+	1·1	=	8	The	excess-3	code	is	obtained	from	the	8-4-2-1	code	by	adding	3	(0011)	to	each	of	the	codes.	The	2-out-of-5	code	has	the	property	that	exactly	2	out	of	the	5	bits	are	1	for	every	valid	code	combination.	This	code	has	useful	error-checking	properties	because	if	any	one	of	the	bits	in	a
code	combination	is	changed	due	to	a	malfunction	of	the	logic	circuitry,	the	number	of	1	bits	is	no	longer	exactly	two.	The	table	shows	one	example	of	a	Gray	code.	A	Gray	code	has	the	property	that	the	codes	for	successive	decimal	digits	differ	in	exactly	one	bit.	For	example,	the	codes	for	6	and	7	differ	only	in	the	fourth	bit,	and	the	codes	for	9	and	0
differ	only	in	the	first	bit.	A	Gray	code	is	often	used	when	translating	an	analog	quantity,	such	as	a	shaft	position,	into	digital	form.	In	this	case,	a	small	change	in	the	analog	quantity	will	change	only	one	bit	in	the	code,	which	gives	more	reliable	operation	than	if	two	or	more	bits	changed	at	a	time.	The	Gray	and	2-out-of-5	codes	are	not	weighted
codes.	In	general,	the	decimal	value	of	a	coded	digit	cannot	be	computed	by	a	simple	formula	when	a	non-weighted	code	is	used.	Many	applications	of	computers	require	the	processing	of	data	which	contains	numbers,	letters,	and	other	symbols	such	as	punctuation	marks.	In	order	to	transmit	Number	Systems	and	Conversion	23	such	alphanumeric
data	to	or	from	a	computer	or	store	it	internally	in	a	computer,	each	symbol	must	be	represented	by	a	binary	code.	One	common	alphanumeric	code	is	the	ASCII	code	(American	Standard	Code	for	Information	Interchange).	This	is	a	7-bit	code,	so	27(128)	different	code	combinations	are	available	to	represent	letters,	numbers,	and	other	symbols.	Table
1-3	shows	a	portion	of	the	ASCII	code;	the	code	combinations	not	listed	are	used	for	special	control	functions	such	as	“form	feed”	or	“end	of	transmission.”	The	word	“Start”	is	represented	in	ASCII	code	as	follows:	1010011	1110100	1100001	1110010	1110100	S	t	a	r	t	ASCII	Code	ASCII	Code	Character	space	!	“	#	$	%	&	′	()	*	+	,	−	.	/	0	1	2	3	4	5	6	7	8
9	:	;	<	=	>	?	ASCII	Code	ASCII	Code	A6	A5	A4	A3	A2	A1	A0	Character	A6	A5	A4	A3	A2	A1	A0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	1	0	1	0	0	1	1	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	1	0	0	1	0	1	1	0	0	1	0	1	1	1	0	1	0	1	1	1	0	1	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	1	0	1	1	0	0	1	0	1	1	0	1	0	0	1	1	0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1	0	1	0	1	1	1	0	1	0	1	1	1	1	0	0	1	1	1	1	0	0	1	1	1	1	1	0	1	1	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	[\]	^	—	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	Character	A6	A5	A4	A3	A2	A1	A0	’	a	b	c	d	e	f	g	h	i	j	k	l	m	n
o	p	q	r	s	t	u	v	w	x	y	z	{	|	}	~	delete	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	1	1	0	0	1	1	0
0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	©	Cengage	Learning	2014	TABLE	1-3	24	Unit	1	Problems	1.1	Convert	to	hexadecimal	and	then	to	binary:	(a)	757.2510	(b)	123.1710	(c)	356.8910	(d)	1063.510	1.2	Convert	to	octal.	Convert	to	hexadecimal.	Then	convert	both	of	your	answers	to
decimal,	and	verify	that	they	are	the	same.	(a)	111010110001.0112	(b)	10110011101.112	1.3	Convert	to	base	6:	3BA.2514	(do	all	of	the	arithmetic	in	decimal).	1.4	(a)	Convert	to	hexadecimal:	1457.1110.	Round	to	two	digits	past	the	hexadecimal	point.	(b)	Convert	your	answer	to	binary,	and	then	to	octal.	(c)	Devise	a	scheme	for	converting
hexadecimal	directly	to	base	4	and	convert	your	answer	to	base	4.	(d)	Convert	to	decimal:	DEC.A16.	1.5	Add,	subtract,	and	multiply	in	binary:	(a)	1111	and	1010	(b)	110110	and	11101	(c)	100100	and	10110	1.6	Subtract	in	binary.	Place	a	1	over	each	column	from	which	it	was	necessary	to	borrow.	(a)	11110100	−	1000111	(b)	1110110	−	111101	(c)
10110010	−	111101	1.7	Add	the	following	numbers	in	binary	using	2’s	complement	to	represent	negative	numbers.	Use	a	word	length	of	6	bits	(including	sign)	and	indicate	if	an	overflow	occurs.	(a)	21	+	11	(b)	(−14)	+	(−32)	(c)	(−25)	+	18	(d)	(−12)	+	13	(e)	(−11)	+	(−21)	Repeat	(a),	(c),	(d),	and	(e)	using	1’s	complement	to	represent	negative
numbers.	1.8	A	computer	has	a	word	length	of	8	bits	(including	sign).	If	2’s	complement	is	used	to	represent	negative	numbers,	what	range	of	integers	can	be	stored	in	the	computer?	If	1’s	complement	is	used?	(Express	your	answers	in	decimal.)	1.9	Construct	a	table	for	7-3-2-1	weighted	code	and	write	3659	using	this	code.	1.10	Convert	to
hexadecimal	and	then	to	binary.	(a)	1305.37510	(b)	111.3310	(c)	301.1210	(d)	1644.87510	1.11	Convert	to	octal.	Convert	to	hexadecimal.	Then	convert	both	of	your	answers	to	decimal,	and	verify	that	they	are	the	same.	(a)	101111010100.1012	(b)	100001101111.012	Number	Systems	and	Conversion	25	1.12	(a)	Convert	to	base	3:	375.548	(do	all	of
the	arithmetic	in	decimal).	(b)	Convert	to	base	4:	384.7410.	(c)	Convert	to	base	9:	A52.A411	(do	all	of	the	arithmetic	in	decimal).	1.13	Convert	to	hexadecimal	and	then	to	binary:	544.19.	1.14	Convert	the	decimal	number	97.710	into	a	number	with	exactly	the	same	value	represented	in	the	following	bases.	The	exact	value	requires	an	infinite	repeating
part	in	the	fractional	part	of	the	number.	Show	the	steps	of	your	derivation.	(a)	binary	(b)	octal	(c)	hexadecimal	(d)	base	3	(e)	base	5	1.15	Devise	a	scheme	for	converting	base	3	numbers	directly	to	base	9.	Use	your	method	to	convert	the	following	number	to	base	9:	1110212.202113	1.16	Convert	the	following	decimal	numbers	to	octal	and	then	to
binary:	(a)	298363∕64	(b)	93.70	(c)	298331∕32	(d)	109.30	1.17	Add,	subtract,	and	multiply	in	binary:	(a)	1111	and	1001	(b)	1101001	and	110110	(c)	110010	and	11101	1.18	Subtract	in	binary.	Place	a	1	over	each	column	from	which	it	was	necessary	to	borrow.	(a)	10100100	−	01110011	(b)	10010011	−	01011001	(c)	11110011	−	10011110	1.19	Divide
in	binary:	(a)	11101001	÷	101	(b)	110000001	÷	1110	(c)	1110010	÷	1001	Check	your	answers	by	multiplying	out	in	binary	and	adding	the	remainder.	1.20	Divide	in	binary:	(a)	10001101	÷	110	(b)	110000011	÷	1011	(c)	1110100	÷	1010	1.21	Assume	three	digits	are	used	to	represent	positive	integers	and	also	assume	the	following	operations	are
correct.	Determine	the	base	of	the	numbers.	Did	any	of	the	additions	overflow?	(a)	654	+	013	=	000	(b)	024	+	043	+	013	+	033	=	223	(c)	024	+	043	+	013	+	033	=	201	1.22	What	is	the	lowest	number	of	bits	(digits)	required	in	the	binary	number	approximately	equal	to	the	decimal	number	0.611710	so	that	the	binary	number	has	the	same	or	better
precision?	1.23	Convert	0.363636	.	.	.	10	to	its	exact	equivalent	base	8	number.	26	Unit	1	1.24	(a)	Verify	that	a	number	in	base	b	can	be	converted	to	base	b3	by	partitioning	the	digits	of	the	base	b	number	into	groups	of	three	consecutive	digits	starting	at	the	radix	point	and	proceeding	both	left	and	right	and	converting	each	group	into	a	base	b3
digit.	(Hint:	Represent	the	base	b	number	using	the	power	series	expansion.)	(b)	Verify	that	a	number	in	base	b3	can	be	converted	to	base	b	by	expanding	each	digit	of	the	base	b3	number	into	three	consecutive	digits	starting	at	the	radix	point	and	proceeding	both	left	and	right.	1.25	(a)	Show	how	to	represent	each	of	the	numbers	(5	−	1),	(52	−	1),
and	(53	−	1)	as	base	5	numbers.	(b)	Generalize	your	answers	to	part	(a)	and	show	how	to	represent	(bn	−	1)	as	a	base	b	number,	where	b	can	be	any	integer	larger	than	1	and	n	any	integer	larger	than	0.	Give	a	mathematical	derivation	of	your	result.	1.26	(a)	Show	that	the	number	121b,	where	b	is	any	base	greater	than	2,	is	a	perfect	square	(i.e.,	it	is
equal	to	the	square	of	some	number).	(b)	Repeat	part	(a)	for	the	number	12321b,	where	b	>	3.	(c)	Repeat	part	(a)	for	the	number	14641b,	where	b	>	6.	(d)	Repeat	part	(a)	for	the	number	1234321b,	where	b	>	4.	1.27	(a)	Convert	(0.12)3	to	a	base	6	fraction.	(b)	Convert	(0.375)10	to	a	base	8	fraction.	(c)	Let	N	=	(0.a	−1a	−2	·	·	·	a	−m)R	be	an	any	base
R	fraction	with	at	most	m	nonzero	digits.	Determine	the	necessary	and	sufficient	conditions	for	N	to	be	representable	as	a	base	S	fraction	with	a	finite	number	of	nonzero	digits;	say	N	=	(0.b	−1b	−2	·	·	·	b	−n)S.	(Hint:	Part	(a)	gives	an	example.	Note	that	(a	−1R	−1	+	a	−2	R	−2	+	·	·	·	a	−m	R	−m)Sn	must	be	an	integer.)	(d)	Generalize	part	(a)	to
determine	necessary	and	sufficient	conditions	for	a	specific,	but	not	every,	base	R	fraction,	N	=	(0.a	−1a	−2	·	·	·	a	−m)R,	to	be	representable	as	a	base	S	fraction	with	a	finite	number	of	nonzero	digits.	1.28	Construct	a	table	for	4-3-2-1	weighted	code	and	write	9154	using	this	code.	1.29	Is	it	possible	to	construct	a	5-3-1-1	weighted	code?	A	6-4-1-1
weighted	code?	Justify	your	answers.	1.30	Is	it	possible	to	construct	a	5-4-1-1	weighted	code?	A	6-3-2-1	weighted	code?	Justify	your	answers.	1.31	Construct	a	6-2-2-1	weighted	code	for	decimal	digits.	What	number	does	1100	0011	represent	in	this	code?	Number	Systems	and	Conversion	27	1.32	Construct	a	5-2-2-1	weighted	code	for	decimal	digits.
What	numbers	does	1110	0110	represent	in	this	code?	1.33	Construct	a	7-3-2-1	code	for	base	12	digits.	Write	B4A9	using	this	code.	1.34	(a)	It	is	possible	to	have	negative	weights	in	a	weighted	code	for	the	decimal	digits,	e.g.,	8,	4,	−2,	and	−1	can	be	used.	Construct	a	table	for	this	weighted	code.	(b)	If	d	is	a	decimal	digit	in	this	code,	how	can	the
code	for	9	−	d	be	obtained?	1.35	Convert	to	hexadecimal,	and	then	give	the	ASCII	code	for	the	resulting	hexadecimal	number	(including	the	code	for	the	hexadecimal	point):	(b)	183.8110	(a)	222.2210	1.36	Repeat	1.7	for	the	following	numbers:	(a)	(−10)	+	(−11)	(b)	(−10)	+	(−6)	(d)	11	+	9	(e)	(−11)	+	(−4)	(c)	(−8)	+	(−11)	1.37	Because	A	−	B	=	A	+
(−B),	the	subtraction	of	signed	numbers	can	be	accomplished	by	adding	the	complement.	Subtract	each	of	the	following	pairs	of	5-bit	binary	numbers	by	adding	the	complement	of	the	subtrahend	to	the	minuend.	Indicate	when	an	overflow	occurs.	Assume	that	negative	numbers	are	represented	in	1’s	complement.	Then	repeat	using	2’s	complement.
(a)	01001	(b)	11010	(c)	10110	(d)	11011	(e)	11100	−11010	−11001	−01101	−00111	−10101	1.38	Work	Problem	1.37	for	the	following	pairs	of	numbers:	(a)	11010	(b)	01011	(c)	10001	(d)	10101	−10100	−11000	−01010	−11010	1.39	(a)	A	=	101010	and	B	=	011101	are	1’s	complement	numbers.	Perform	the	following	operations	and	indicate	whether
overflow	occurs.	(i)	A	+	B	(ii)	A	−	B	(b)	Repeat	part	(a)	assuming	the	numbers	are	2’s	complement	numbers.	1.40	(a)	Assume	the	integers	below	are	1’s	complement	integers.	Find	the	1’s	complement	of	each	number,	and	give	the	decimal	values	of	the	original	number	and	of	its	complement.	(i)	0000000	(ii)	1111111	(iii)	00110011	(iv)	1000000	(b)
Repeat	part	(a)	assuming	the	numbers	are	2’s	complement	numbers	and	finding	the	2’s	complement	of	them.	1.41	An	alternative	algorithm	for	converting	a	base	20	integer,	dn−1dn−2	·	·	·	d1d0,	into	a	base	10	integer	is	stated	as	follows:	Multiply	di	by	2i	and	add	i	0’s	on	the	right,	and	then	add	all	of	the	results.	28	Unit	1	(a)	Use	this	algorithm	to
convert	GA720	to	base	10.	(G20	is	1610.)	(b)	Prove	that	this	algorithm	is	valid.	(c)	Consider	converting	a	base	20	fraction,	0.d	−1d	−2	·	·	·	d	−n+1d	−n,	into	a	base	10	fraction.	State	an	algorithm	analogous	to	the	one	above	for	doing	the	conversion.	(d)	Apply	your	algorithm	of	part	(c)	to	0.FA720.	1.42	Let	A	and	B	be	positive	integers,	and	consider	the
addition	of	A	and	B	in	an	n-bit	2’s	complement	number	system.	(a)	Show	that	the	addition	of	A	and	B	produces	the	correct	representation	of	the	sum	if	the	magnitude	of	(A	+	B)	is	<	2n−1	−	1	but	it	produces	a	representation	of	a	negative	number	of	magnitude	2n	−	(A	+	B)	if	the	magnitude	of	(A	+	B)	is	>	2n−1	−	1.	(b)	Show	that	the	addition	of	A	and
(−B)	always	produces	the	correct	representation	of	the	sum.	Consider	both	the	case	where	A	≥	B	and	the	case	A	<	B.	(c)	Show	that	the	addition	of	(2n	−	A)	+	(2n	−	B),	with	the	carry	from	the	sign	position	ignored,	produces	the	correct	2’s	complement	representation	of	−(A	+	B)	if	the	magnitude	of	A	+	B	is	less	than	or	equal	to	2n−1.	Also,	show	that
it	produces	an	incorrect	sum	representing	the	positive	number	2n	−	(A	+	B)	if	the	magnitude	of	(A	+	B)	>	2n−1.	1.43	Let	A	and	B	be	integers	and	consider	the	addition	of	A	and	B	in	an	n-bit	1’s	complement	number	system.	Prove	that	addition	of	A	and	B	using	the	end-around	carry	produces	the	correct	representation	of	the	sum	provided	overflow
does	not	occur.	Consider	the	four	cases:	A	and	B	both	positive,	A	positive	and	B	negative	with	the	magnitude	of	A	greater	than	the	magnitude	of	B,	A	positive	and	B	negative	with	the	magnitude	of	A	less	than	or	equal	to	the	magnitude	of	B,	and	A	and	B	both	negative.	1.44	Prove	that	in	a	2’s	complement	number	system	addition	overflows	if	and	only	if
the	carry	from	the	sign	position	does	not	equal	the	carry	into	the	sign	position.	Consider	the	three	cases:	adding	two	positive	numbers,	adding	two	negative	numbers,	and	adding	two	numbers	of	opposite	sign.	1.45	Restate	the	method	for	detecting	overflow	of	Problem	1.44	so	that	it	applies	to	1’s	complement	numbers.	1.46	Let	B	=	bn−1bn−2	·	·	·
b1b0	be	an	n-bit	2’s	complement	integer.	Show	that	the	decimal	value	of	B	is	−bn−12n−1	+	bn−22n−2	+	bn−32n−3	+	·	·	·	+	b12	+	b0.	(Hint:	Consider	positive	(bn−1	=	0)	and	negative	(bn−1	=	1)	numbers	separately,	and	note	that	the	magnitude	of	a	negative	number	is	obtained	by	subtracting	each	bit	from	1	(i.e.,	complementing	each	bit)	and
adding	1	to	the	result.)	www.allitebooks.com	UNIT	Boolean	Algebra	2	Objectives	A	list	of	some	of	the	laws	of	switching	algebra,	which	is	a	special	case	of	Boolean	algebra,	is	given	in	Table	2-3.	Additional	theorems	of	Boolean	algebra	are	given	in	Table	2-4.	When	you	complete	this	unit,	you	should	be	familiar	with	and	be	able	to	use	these	laws	and
theorems	of	Boolean	algebra.	1.	Understand	the	basic	operations	and	laws	of	Boolean	algebra.	2.	Relate	these	operations	and	laws	to	circuits	composed	of	AND	gates,	OR	gates,	and	INVERTERS.	Also	relate	these	operations	and	laws	to	circuits	composed	of	switches.	3.	Prove	any	of	these	laws	in	switching	algebra	using	a	truth	table.	4.	Apply	these
laws	to	the	manipulation	of	algebraic	expressions	including:	a.	Multiplying	out	an	expression	to	obtain	a	sum	of	products	(SOP)	b.	Factoring	an	expression	to	obtain	a	product	of	sums	(POS)	c.	Simplifying	an	expression	by	applying	one	of	the	laws	d.	Finding	the	complement	of	an	expression	29	Unit	2	Study	Guide	1.	In	this	unit	you	will	study	Boolean
algebra,	the	basic	mathematics	needed	for	the	logic	design	of	digital	systems.	Just	as	when	you	first	learned	ordinary	algebra,		you	will	need	a	fair	amount	of	practice	before	you	can	use	Boolean	algebra	effectively.	However,	by	the	end	of	the	course,	you	should	be	just	as	comfortable	with	Boolean	algebra	as	with	ordinary	algebra.	Fortunately,	many	of
the	rules	of	Boolean	algebra	are	the	same	as	for	ordinary	algebra,	but	watch	out	for	some	surprises!	2.	Study	Sections	2.1	and	2.2,	Introduction	and	Basic	Operations.	(a)	How	does	the	meaning	of	the	symbols	0	and	1	as	used	in	this	unit	differ	from	the	meaning	as	used	in	Unit	1?	for	AND	...	(b)	Two	commonly	used	notations	for	the	inverse	or
complement	of	A	are	A	and	A′.	The	latter	has	the	advantage	that	it	is	much	easier	for	typists,	printers,	and	computers.	(Have	you	ever	tried	to	get	a	computer	to	print	a	bar	over	a	letter?)	We	will	use	A′	for	the	complement	of	A.	You	may	use	either	notation	in	your	work,	but	please	do	not	mix	notations	in	the	same	equation.	Most	engineers	use
+GPS03BOEr	PSOPTZNCPM	GPS"/%	BOEXF	will	follow	this	practice.	An	alternative	notation,	often	used	by	mathematicians,	is	∨	for	OR	and	∧	for	AND.	(c)	Many	different	symbols	are	used	for	AND,	OR,	and	INVERTER	logic	blocks.	Initially	we	will	use	...	30	for	OR	+	for	INVERTER	The	shapes	of	these	symbols	conform	to	those	commonly	used	in
industrial	practice.	We	have	added	the	+BOErGPSDMBSJUZ5IFTFTZNCPMTQPJOUJOUIF	direction	of	signal	flow.	This	makes	it	easier	to	read	the	circuit	diagrams	in	comparison	with	the	square	or	round	symbols	used	in	some	books.	(d)	Determine	the	output	of	each	of	the	following	gates:	1	1	+	1	1	0	0	1	+	1	(e)	Determine	the	unspecified	inputs	to
each	of	the	following	gates	if	the	outputs	are	as	shown:	1	+	0	1	0	0	+	1	Boolean	Algebra	3.	31	Study	Section	2.3,	Boolean	Expressions	and	Truth	Tables.	(a)	How	many	variables	does	the	following	expression	contain?	How	many	literals?	A′BC′D	+	AB	+	B′CD	+	D′	(b)	For	the	following	circuit,	if	A	=	B	=	0	and	C	=	D	=	E	=	1,	indicate	the	output	of	each
gate	(0	or	1)	on	the	circuit	diagram:	C	D	+	A	+	F	B	E	(c)	Derive	a	Boolean	expression	for	the	circuit	output.	Then	substitute	A	=	B	=	0	and	C	=	D	=	E	=	1	into	your	expression	and	verify	that	the	value	of	F	obtained	in	this	way	is	the	same	as	that	obtained	on	the	circuit	diagram	in	(b).	(d)	Write	an	expression	for	the	output	of	the	following	circuit	and
complete	the	truth	table:	AB	A	A′	A′	B	(A′B)′	F	B	F=	(e)	When	filling	in	the	combinations	of	values	for	the	variables	on	the	left	side	of	a	truth	table,	always	list	the	combinations	of	0’s	and	1’s	in	binary	order.	For	example,	for	a	three-variable	truth	table,	the	first	row	should	be	000,	the	next	row	001,	then	010,	011,	100,	101,	110,	and	111.	Write	an
expression	for	the	output	of	the	following	circuit	and	complete	the	truth	table:	A	B	ABC	+	C	B′	A	+	B′	C(A	+	B′)	F	F=	(f)	Draw	a	gate	circuit	which	has	an	output	Z	=	[BC′	+	F(E	+	AD′)]	′	(Hint:	Start	with	the	innermost	parentheses	and	draw	the	circuit	for	AD′	first.)	32	Unit	2	Study	Section	2.4,	Basic	Theorems.	4.	(a)	Prove	each	of	the	Theorems	(2-4)
through	(2-8D)	by	showing	that	it	is	valid	for	both	X	=	0	and	X	=	1.	(b)	Determine	the	output	of	each	of	these	gates:	A	A′	A	A	A	A	0	1	A	A	+	A′	A	A	+	A	+	0	1	+	(c)	State	which	of	the	basic	theorems	was	used	in	simplifying	each	of	the	following	expressions:	(AB′	+	C)	·	0	=	0	A(B	+	C′)	+	1	=	1	(BC′	+	A)(BC′	+	A)	=	BC′	+	A	X(Y′	+	Z)	+	[X(Y′	+	Z)]	′	=	1	(X′
+	YZ)(X′	+	YZ)′	=	0	D′(E′	+	F)	+	D′(E′	+	F)	=	D′(E′	+	F)	Study	Section	2.5,	Commutative,	Associative,	Distributive,	and	DeMorgan’s	Laws.	5.	(a)	State	the	associative	law	for	OR.	(b)	State	the	commutative	law	for	AND.	(c)	Simplify	the	following	circuit	by	using	the	associative	laws.	Your	answer	should	require	only	two	gates.	A	B	+	C	G	D	E	F	+	(d)	For
each	gate	determine	the	value	of	the	unspecified	input(s):	+	0	1	1	1	0	0	0	+	1	0	(e)	Using	a	truth	table,	verify	the	distributive	law,	Equation	(2-11).	1	Boolean	Algebra	33	(f)	Illustrate	the	distributive	laws,	Equations	(2-11)	and	(2-11D),	using	AND	and	OR	gates.	(g)	Verify	Equation	(2-3)	using	the	second	distributive	law.	(h)	Show	how	the	second
distributive	law	can	be	used	to	factor	RS	+	T′	.	6.	Study	Section	2.6,	Simplification	Theorems.	(a)	By	completing	the	truth	table,	prove	that	XY′	+	Y	=	X	+	Y.	XY	0	0	0	1	1	0	1	1	XY′	XY′	+	Y	X+Y	(b)	Which	one	of	Theorems	in	Table	2-4	was	applied	to	simplify	each	of	the	following	expressions?	Identify	X	and	Y	in	each	case.	(A	+	B)(DE)′	+	DE	=	A	+	B	+	DE
AB′	+	AB′C′D	=	AB′	(A′	+	B)(CD	+	E′)	+	(A′	+	B)(CD	+	E′)′	=	A′	+	B	(A	+	BC′	+	D′E)(A	+	D′E)	=	A	+	D′E	34	Unit	2	(c)	Simplify	the	following	circuit	to	a	single	gate:	A	B	+	C	Z	C	+	D	(d)	Work	Problems	2.1,	2.2,	2.3,	and	2.4.	7.	Study	Section	2.7,	Multiplying	Out	and	Factoring.	(a)	Indicate	which	of	the	following	expressions	are	in	the	product-of-sums
form,	sum-of-products	form,	or	neither:	AB′	+	D′EF	′	+	G	(A	+	B′C′)(A′	+	BC)	AB′(C′	+	D	+	E′)(F	′	+	G)	X′Y	+	WX(X′	+	Z)	+	A′B′C′	Your	answer	should	indicate	one	expression	as	a	product-of-sums	form,	one	as	sum-of-products	form,	and	two	as	neither,	not	necessarily	in	that	order.	(b)	When	multiplying	out	an	expression,	why	should	the	second
distributive	law	be	applied	before	the	ordinary	distributive	law	when	possible?	(c)	Factor	as	much	as	possible	using	the	ordinary	distributive	law:	AD	+	B′CD	+	B′DE	Now	factor	your	result	using	the	second	distributive	law	to	obtain	a	product	of	sums.	(d)	Work	Problems	2.5,	2.6,	and	2.7.	8.	Probably	the	most	difficult	part	of	the	unit	is	using	the	second
distributive	law	for	factoring	or	multiplying	out	an	expression.	If	you	have	difficulty	with	Problems	2.5	or	2.6,	or	you	cannot	work	them	quickly,	study	the	examples	in	Section	2.7	again,	and	then	work	the	following	problems.	Multiply	out:	(a)	(B′	+	D	+	E)(B′	+	D	+	A)(AE	+	C′)	(b)	(A	+	C′)(B′	+	D)(C′	+	D′)(C	+	D)E	Boolean	Algebra	35	As	usual,	when	we
say	multiply	out,	we	do	not	mean	to	multiply	out	by	brute	force,	but	rather	to	use	the	second	distributive	law	whenever	you	can	to	cut	down	on	the	amount	of	work	required.	The	answer	to	(a)	should	be	of	the	following	form:	XX	+	XX	+	XX	and	(b)	of	the	form:	XXX	+	XXXXX,	where	each	X	represents	a	single	variable	or	its	complement.	Now	factor	your
answer	to	(a)	to	see	that	you	can	get	back	the	original	expression.	9.	10.	Study	Section	2.8,	Complementing	Boolean	Expressions.	Find	the	complement	of	each	of	the	following	expressions	as	indicated.	In	your	answer,	the	complement	operation	should	be	applied	only	to	single	variables.	(a)	(ab′c′)′	=	(b)	(a′	+	b	+	c	+	d′)′	=	(c)	(a′	+	bc)′	=	(d)	(a′b′	+	cd)′
=	(e)	[a(b′	+	c′d)]	′	=	11.	Because	(X′)′	=	X,	if	you	complement	each	of	your	answers	to	10,	you	should	get	back	the	original	expression.	Verify	that	this	is	true.	(a)	(b)	(c)	(d)	(e)	12.	Given	that	F	=	a′b	+	b′c,	F′	=	Complete	the	following	truth	table	and	verify	that	your	answer	is	correct:	abc	000	001	010	011	100	101	110	111	a′b	b′c	a′b	+	b′c	(a	+	b′)	(b	+
c′)	F′	36	Unit	2	13.	A	fully	simplified	expression	should	have	nothing	complemented	except	the	individual	variables.	For	example,	F	=	(X	+	Y)′	(W	+	Z)	is	not	a	minimum	product	of	sums.	Find	the	minimum	product	of	sums	for	F.	14.	Work	Problems	2.8	and	2.9.	15.	Find	the	dual	of	(M	+	N′)	P′.	16.	Review	the	laws	of	Table	2-3	and	the	first	three
theorems	of	Table	2-4.	Make	sure	that	you	can	recognize	when	to	apply	them	even	if	an	expression	has	been	substituted	for	a	variable.	17.	Reread	the	objectives	of	this	unit.	If	you	are	satisfied	that	you	can	meet	these	objectives,	take	the	readiness	test.	[Note:	You	will	be	provided	with	a	copy	of	Tables	2-3	and	2-4	when	you	take	the	readiness	test	this
time.	However,	by	the	end	of	Unit	3,	you	should	know	all	the	laws	and	theorems	by	memory.]	Boolean	Algebra	2.1	Introduction	The	basic	mathematics	needed	for	the	study	of	logic	design	of	digital	systems	is	Boolean	algebra.	George	Boole	developed	Boolean	algebra	in	1847	and	used	it	to	solve	problems	in	mathematical	logic.	Boolean	algebra	has
many	other	applications,	including	set	theory	and	mathematical	logic;	however,	we	primarily	consider	its	application	to	switching	circuits.	All	of	the	switching	devices	we	will	use	are	essentially	twostate	devices	(e.g.,	switches	which	are	open	or	closed	and	transistors	with	high	or	low	Boolean	Algebra	37	output	voltages).	Consequently,	we	will
emphasize	the	special	case	of	Boolean	algebra	in	which	all	of	the	variables	assume	only	one	of	two	values;	this	two-valued	Boolean	algebra	is	often	called	switching	algebra.	Claude	Shannon	first	applied	Boolean	algebra	to	the	design	of	switching	circuits	in	1939.	First,	we	develop	some	of	the	properties	of	switching	algebra	and	use	these	to	define	a
general	Boolean	algebra.	We	will	use	a	Boolean	variable,	such	as	X	or	Y,	to	represent	the	input	or	output	of	a	switching	circuit.	We	will	assume	that	each	of	these	variables	can	take	on	only	two	different	values.	The	symbols	“0”	and	“1”	are	used	to	represent	these	two	different	values.	Thus,	if	X	is	a	Boolean	(switching)	variable,	then	either	X	=	0	or	X	=
1.	The	symbols	“0”	and	“1”	used	in	Boolean	algebra	do	not	have	a	numeric	value;	instead	they	represent	two	different	states	in	a	logic	circuit	and	are	the	two	values	of	a	switching	variable.	In	a	logic	gate	circuit,	0	(usually)	represents	a	range	of	low	voltages,	and	1	represents	a	range	of	high	voltages.	In	a	switch	circuit,	0	(usually)	represents	an	open
switch,	and	1	represents	a	closed	circuit.	In	general,	0	and	1	can	be	used	to	represent	the	two	states	in	any	binary-valued	system.	2.2	Basic	Operations	The	basic	operations	of	Boolean	(switching)	algebra	are	called	AND,	OR,	and	complement	(or	inverse).	In	the	case	of	switch	circuits	these	operations	correspond	to	different	configurations	of	switches.
To	apply	switching	algebra	to	a	switch	circuit,	each	switch	contact	is	labeled	with	a	variable.	If	contact	X	is	open,	the	variable	X	is	defined	to	be	0;	if	contact	X	is	closed,	the	variable	X	is	defined	to	be	1.	X	X	=	0	→	switch	open	X	=	1	→	switch	closed	The	contacts	in	a	switch	can	be	normally	open	(NO)	or	normally	closed	(NC).	When	the	switch	position	is
changed,	the	NO	contact	closes	and	the	NC	contact	opens,	so	the	NO	and	NC	contacts	are	always	in	opposite	states.	If	X	is	the	variable	assigned	to	the	NO	contact,	then	the	variable	assigned	to	the	NC	contact	is	the	complement	of	X,	denoted	as	X′	,	where	the	prime	(′)	denotes	complementation.	A	B	NO	contact	NC	contact	The	complement	of	0	is	1,
and	the	complement	of	1	is	0.	Symbolically,	we	write	0′	=	1	and	1′	=	0	38	Unit	2	If	Xis	a	switching	variable,	X′	=	1	if	X	=	0	and	X′	=	0	if	X	=	1	An	alternate	name	for	complementation	is	inversion,	and	the	electronic	circuit	which	forms	the	inverse	of	X	is	referred	to	as	an	inverter.	Symbolically,	we	represent	an	inverter	by	X	X′	where	the	circle	at	the
output	indicates	inversion.	A	low	voltage	at	the	inverter	input	produces	a	high	voltage	at	the	output	and	vice	versa.	In	a	general	switch	circuit,	the	value	0	is	assigned	to	the	connection	between	two	terminals	in	the	circuit	if	there	is	no	connection	(open	circuit)	between	the	terminals,	and	a	1	is	assigned	if	there	is	a	connection	(closed	circuit)	between
the	terminals.	If	the	switch	circuit	only	contains	two	switches,	the	switch	contacts	must	be	connected	in	series	or	in	parallel.	When	switch	contacts	A	and	B	are	connected	in	series,	there	is	an	open	circuit	between	the	terminals	if	either	A	or	B	or	both	are	open	(0),	and	there	is	a	closed	circuit	between	the	terminals	only	if	both	A	and	B	are	closed	(1).	1
A	B	2	C	=	0	→	open	circuit	between	terminals	1	and	2	C	=	1	→	closed	circuit	between	terminals	1	and	2	This	is	summarized	in	the	following	truth	table:	AB	0	0	0	1	1	0	1	1	C=A·B	0	0	0	1	The	operation	defined	by	the	table	is	called	AND	and	it	is	written	algebraically	as	C	=	A	·	B.	The	“·”	symbol	is	frequently	omitted	in	a	Boolean	expression,	and	we	will
usually	write	AB	instead	of	A	·	B.	The	AND	operation	is	also	referred	to	as	logical	(or	Boolean)	multiplication.	When	switches	A	and	B	are	connected	in	parallel,	there	is	a	closed	circuit	between	the	terminals	if	either	A	or	B	is	closed	(1),	and	there	is	an	open	circuit	between	the	terminals	only	if	both	A	and	B	are	open	(0).	A	1	B	www.allitebooks.com	2
Boolean	Algebra	39	This	is	summarized	in	the	following	truth	table:	AB	0	0	0	1	1	0	1	1	C=A+B	0	1	1	1	The	operation	defined	by	the	table	is	called	OR	and	it	is	written	algebraically	as	C	=	A	+	B.	This	type	of	OR	operation	is	sometimes	referred	to	as	inclusive	OR	as	opposed	to	exclusive	OR,	which	is	defined	later.	The	OR	operation	is	also	referred	to	as
logical	(or	Boolean)	addition.	Logic	gates	operate	so	that	the	voltage	on	inputs	and	outputs	of	a	gate	is	either	in	a	low	voltage	range	or	a	high	voltage	range,	except	when	the	signals	are	changing.	Switching	algebra	can	be	applied	to	logic	gates	by	assigning	0	and	1	to	the	two	voltage	ranges.	Usually,	a	0	is	assigned	to	the	low	voltage	range	and	a	1	to
the	high	voltage	range.	A	logic	gate	which	performs	the	AND	operation	is	represented	by	A	C=AB	B	The	gate	output	is	C	=	1	if	and	only	if	the	gate	inputs	A	=	1	and	B	=	1.	A	logic	gate	which	performs	the	OR	operation	is	represented	by	A	B	+	C=A+B	The	gate	output	is	C	=	1	if	and	only	if	the	gate	inputs	A	=	1	or	B	=	1	(or	both).	Electronic	circuits
which	realize	inverters	and	AND	and	OR	gates	are	described	in	Appendix	A.	2.3	Boolean	Expressions	and	Truth	Tables	Boolean	expressions	are	formed	by	application	of	the	basic	operations	to	one	or	more	variables	or	constants.	The	simplest	expressions	consist	of	a	single	constant	or	variable,	such	as	0,	X,	or	Y′.	More	complicated	expressions	are
formed	by	combining	two	or	more	other	expressions	using	AND	or	OR,	or	by	complementing	another	expression.	Examples	of	expressions	are	AB′	+	C	[A(C	+	D)]	′	+	BE	(2-1)	(2-2)	Parentheses	are	added	as	needed	to	specify	the	order	in	which	the	operations	are	performed.	When	parentheses	are	omitted,	complementation	is	performed	first	followed
by	AND	and	then	OR.	Thus	in	Expression	(2-1),	B′	is	formed	first,	then	AB′,	and	finally	AB′	+	C.	40	Unit	2	Each	expression	corresponds	directly	to	a	circuit	of	logic	gates.	Figure	2-1	gives	the	circuits	for	Expressions	(2-1)	and	(2-2).	A	FIGURE	2-1	Circuits	for	Expressions	(2-1)	and	(2-2)	B	AB′	C	B′	+	(AB′	+	C)	(a)	©	Cengage	Learning	2014	C	D	(C	+	D)	+
A(C	+	D)	[A(C	+	D)]′	+	A	B	E	[A(C	+	D)]′	+	BE	BE	(b)	An	expression	is	evaluated	by	substituting	a	value	of	0	or	1	for	each	variable.	If	A	=	B	=	C	=	1	and	D	=	E	=	0,	the	value	of	Expression	(2-2)	is	[A(C	+	D)]	′	+	BE	=	[1(1	+	0)]	′	+	1	·	0	=	[1(1)]	′	+	0	=	0	+	0	=	0	Each	appearance	of	a	variable	or	its	complement	in	an	expression	will	be	referred	to	as
a	literal.	Thus,	the	following	expression,	which	has	three	variables,	has	10	literals:	ab′c	+	a′b	+	a′bc′	+	b′c′	When	an	expression	is	realized	using	logic	gates,	each	literal	in	the	expression	corresponds	to	a	gate	input.	A	truth	table	(also	called	a	table	of	combinations)	specifies	the	values	of	a	Boolean	expression	for	every	possible	combination	of	values	of
the	variables	in	the	expression.	The	name	truth	table	comes	from	a	similar	table	which	is	used	in	symbolic	logic	to	list	the	truth	or	falsity	of	a	statement	under	all	possible	conditions.	We	can	use	a	truth	table	to	specify	the	output	values	for	a	circuit	of	logic	gates	in	terms	of	the	values	of	the	input	variables.	The	output	of	the	circuit	in	Figure	2-2(a)	is	F
=	A′	+	B.	Figure	2-2(b)	shows	a	truth	table	which	specifies	the	output	of	the	circuit	for	all	possible	combinations	of	values	of	the	inputs	A	and	B.	The	first	two	columns	list	the	four	combinations	of	values	of	A	and	B,	and	the	next	column	gives	the	corresponding	values	of	A′.	The	last	column,	which	gives	the	values	of	A′	+	B,	is	formed	by	ORing	together
corresponding	values	of	A′	and	B	in	each	row.	FIGURE	2-2	Two-Input	Circuit	and	Truth	Table	©	Cengage	Learning	2014	A	A′	B	+	(a)	F	=	A′	+	B	A	0	0	1	(b)	1	B	0	1	0	1	A′	1	1	0	0	F	=	A′	+	B	1	1	0	1	Boolean	Algebra	41	Next,	we	will	use	a	truth	table	to	specify	the	value	of	Expression	(2-1)	for	all	possible	combinations	of	values	of	the	variables	A,	B,	and	C.
On	the	left	side	of	Table	2-1,	we	list	the	values	of	the	variables	A,	B,	and	C.	Because	each	of	the	three	variables	can	assume	the	value	0	or	1,	there	are	2	×	2	×	2	=	8	combinations	of	values	of	the	variables.	These	combinations	are	easily	obtained	by	listing	the	binary	numbers	000,	001,	…	,	111.	In	the	next	three	columns	of	the	truth	table,	we	compute
B′	,	AB′,	and	AB′	+	C,	respectively.	Two	expressions	are	equal	if	they	have	the	same	value	for	every	possible	combination	of	the	variables.	The	expression	(A	+	C)(B′	+	C)	is	evaluated	using	the	last	three	columns	of	Table	2-1.	Because	it	has	the	same	value	as	AB′	+	C	for	all	eight	combinations	of	values	of	the	variables	A,	B,	and	C,	we	conclude	TABLE	2-
1	©	Cengage	Learning	2014	A	0	0	0	0	1	1	1	1	B	0	0	1	1	0	0	1	1	C	0	1	0	1	0	1	0	1	B′	1	1	0	0	1	1	0	0	AB′	0	0	0	0	1	1	0	0	AB′	+	C	0	1	0	1	1	1	0	1	A+C	0	1	0	1	1	1	1	1	B′	+	C	1	1	0	1	1	1	0	1	(A	+	C)(B′	+	C)	0	1	0	1	1	1	0	1	AB′	+	C	=	(A	+	C)(B′	+	C)	(2-3)	If	an	expression	has	n	variables,	and	each	variable	can	have	the	value	0	or	1,	the	number	of	different
combinations	of	values	of	the	variables	is	2	×	2	×	2	×	.	.	.	=	2n	n	times	Therefore,	a	truth	table	for	an	n-variable	expression	will	have	2n	rows.	2.4	Basic	Theorems	The	following	basic	laws	and	theorems	of	Boolean	algebra	involve	only	a	single	variable:	Operations	with	0	and	1:	X+0=X	(2-4)	X·1=X	(2-4D)	X+1=1	(2-5)	X·0=0	(2-5D)	42	Unit	2	Idempotent
laws:	X+X=X	(2-6)	Involution	law:	(X′)′	=	X	(2-7)	Laws	of	complementarity:	X	+	X′	=	1	(2-8)	X·X=X	(2-6D)	X	·	X′	=	0	(2-8D)	Each	of	these	theorems	is	easily	proved	by	showing	that	it	is	valid	for	both	of	the	possible	values	of	X.	For	example,	to	prove	X	+	X′	=	1,	we	observe	that	if	X	=	0,	0	+	0′	=	0	+	1	=	1,	and	if	X	=	1,	1	+	1′	=	1	+	0	=	1	Any	expression
can	be	substituted	for	the	variable	X	in	these	theorems.	Thus,	by	Theorem	(2-5),	(AB′	+	D)E	+	1	=	1	and	by	Theorem	(2-8D),	(AB′	+	D)(AB′	+	D)′	=	0	We	will	illustrate	some	of	the	basic	theorems	with	circuits	of	switches.	As	before,	0	will	represent	an	open	circuit	or	open	switch,	and	1	will	represent	a	closed	circuit	or	closed	switch.	If	two	switches	are
both	labeled	with	the	variable	A,	this	means	that	both	switches	are	open	when	A	=	0	and	both	are	closed	when	A	=	1.	Thus	the	circuit	A	A	can	be	replaced	with	a	single	switch:	A	This	illustrates	the	theorem	A	·	A	=	A.	Similarly,	A	A	=	A	which	illustrates	the	theorem	A	+	A	=	A.	A	switch	in	parallel	with	an	open	circuit	is	equivalent	to	the	switch	alone	A
=	(A	+	0	=	A)	A	Boolean	Algebra	43	while	a	switch	in	parallel	with	a	short	circuit	is	equivalent	to	a	short	circuit.	A	=	(A	+	1	=	1)	If	a	switch	is	labeled	A′,	then	it	is	open	when	A	is	closed	and	conversely.	Hence,	A	in	parallel	with	A′	can	be	replaced	with	a	closed	circuit	because	one	or	the	other	of	the	two	switches	is	always	closed.	A	=	A′	(A	+	A′	=	1)
Similarly,	switch	A	in	series	with	A′	can	be	replaced	with	an	open	circuit	(why?).	A	A′	=	(A		A′	=	0)	2.5	Commutative,	Associative,	Distributive,	and	DeMorgan’s	Laws	Many	of	the	laws	of	ordinary	algebra,	such	as	the	commutative	and	associative	laws,	also	apply	to	Boolean	algebra.	The	commutative	laws	for	AND	and	OR,	which	follow	directly	from	the
definitions	of	the	AND	and	OR	operations,	are	XY	=	YX	(2-9)	X+Y=Y+X	(2-9D)	This	means	that	the	order	in	which	the	variables	are	written	will	not	affect	the	result	of	applying	the	AND	and	OR	operations.	The	associative	laws	also	apply	to	AND	and	OR:	(XY)Z	=	X(YZ)	=	XYZ	(X	+	Y)	+	Z	=	X	+	(Y	+	Z)	=	X	+	Y	+	Z	(2-10)	(2-10D)	When	forming	the	AND
(or	OR)	of	three	variables,	the	result	is	independent	of	which	pair	of	variables	we	associate	together	first,	so	parentheses	can	be	omitted	as	indicated	in	Equations	(2-10)	and	(2-10D).	44	Unit	2	When	the	preceding	laws	are	interpreted	as	switch	circuits,	they	simply	indicate	that	the	order	in	which	switch	contacts	are	connected	does	not	change	the
logic	operation	of	the	circuit.	We	will	prove	the	associative	law	for	AND	by	using	a	truth	table	(Table	2-2).	On	the	left	side	of	the	table,	we	list	all	combinations	of	values	of	the	variables	X,Y,	and		Z.	In	the	next	two	columns	of	the	truth	table,	we	compute	XY	and	YZ	for	each	combination	of	values	of	X,	Y,	and	Z.	Finally,	we	compute	(XY)Z	and	X(YZ).
Because	(XY)Z	and	X(YZ)	are	equal	for	all	possible	combinations	of	values	of	the	variables,	we	conclude	that	Equation	(2-10)	is	valid.	TABLE	2-2	Proof	of	Associative	Law	for	AND	©	Cengage	Learning	2014	X	0	0	0	0	1	1	1	1	Y	0	0	1	1	0	0	1	1	Z	0	1	0	1	0	1	0	1	XY	0	0	0	0	0	0	1	1	YZ	0	0	0	1	0	0	0	1	(XY)Z	0	0	0	0	0	0	0	1	X(YZ)	0	0	0	0	0	0	0	1	Figure	2-3
illustrates	the	associative	laws	using	AND	and	OR	gates.	In	Figure	2-3(a)	two	two-input	AND	gates	are	replaced	with	a	single	three-input	AND	gate.	Similarly,	in	Figure	2-3(b)	two	two-input	OR	gates	are	replaced	with	a	single	three-input	OR	gate.	FIGURE	2-3	Associative	Laws	for	AND	and	OR	A	B	=	C	A	B	C	(AB)	C	=	ABC	©	Cengage	Learning	2014
(a)	A	B	+	C	=	+	A	B	C	+	(A	+	B)	+	C	=	A	+	B	+	C	(b)	When	two	or	more	variables	are	ANDed	together,	the	value	of	the	result	will	be	1	if	all	of	the	variables	have	the	value	1.	If	any	of	the	variables	have	the	value	0,	the	result	of	the	AND	operation	will	be	0.	For	example,	XYZ	=	1	iff	X	=	Y	=	Z	=	1	When	two	or	more	variables	are	ORed	together,	the
value	of	the	result	will	be	1	if	any	of	the	variables	have	the	value	1.	The	result	of	the	OR	operation	will	be	0	iff	all	of	the	variables	have	the	value	0.	For	example,	X	+	Y	+	Z	=	0	iff	X	=	Y	=	Z	=	0	Boolean	Algebra	45	Using	a	truth	table,	it	is	easy	to	show	that	the	distributive	law	is	valid:	X(Y	+	Z)	=	XY	+	XZ	(2-11)	In	addition	to	the	ordinary	distributive
law,	a	second	distributive	law	is	valid	for	Boolean	algebra	but	not	for	ordinary	algebra:	X	+	YZ	=	(X	+	Y)(X	+	Z)	(2-11D)	Proof	of	the	second	distributive	law	follows:	(X	+	Y)(X	+	Z)	=	X(X	+	Z)	+	Y(X	+	Z)	=	XX	+	XZ	+	YX	+	YZ	(by	(2-11))	=	X	+	XZ	+	XY	+	YZ	=	X	·	1	+	XZ	+	XY	+	YZ	(by	(2-6D)	and	(2-4D))	=	X(1	+	Z	+	Y)	+	YZ	=	X	·	1	+	YZ	=	X	+	YZ	(by
(2-11),	(2-5),	and	(2-4D))	The	ordinary	distributive	law	states	that	the	AND	operation	distributes	over	OR,	while	the	second	distributive	law	states	that	OR	distributes	over	AND.	This	second	law	is	very	useful	in	manipulating	Boolean	expressions.	In	particular,	an	expression	like	A	+	BC,	which	cannot	be	factored	in	ordinary	algebra,	is	easily	factored
using	the	second	distributive	law:	A	+	BC	=	(A	+	B)(A	+	C)	The	next	laws	are	called	DeMorgan’s	laws.	(X	+	Y)′	=	X′Y′	(2-12)	(XY)′	=	X′	+	Y′	(2-13)	We	will	verify	these	laws	using	a	truth	table:	X	0	0	1	1	Y	0	1	0	1	X	′	Y′	1	1	1	0	0	1	0	0	X+Y	0	1	1	1	(X	+	Y)′	1	0	0	0	X′Y′	1	0	0	0	XY	0	0	0	1	(XY)′	1	1	1	0	X′	+	Y′	1	1	1	0	The	laws	we	have	derived	for	switching
algebra	are	summarized	in	Table	2-3.	One	definition	of	Boolean	algebra	is	a	set	containing	at	least	two	distinct	elements	with	the	operations	of	AND,	OR,	and	complement	defined	on	the	elements	that	satisfy	46	Unit	2	the	laws	in	Table	2-3.	This	definition	is	not	minimal	(i.e.,	the	laws	are	not	independent	since	some	can	be	derived	from	others).	It	is
chosen	for	convenience	so	that	other	Boolean	algebra	theorems	can	be	derived	easily.	One	minimal	set	of	laws	referred	to	as	Huntington’s	postulates	are	operations	with	0	and	1,	commutative	laws,	distributive	laws,	and	complementation	laws.	The	other	laws	can	be	algebraically	derived	from	this	minimal	set.	TABLE	2-3	Laws	of	Boolean	Algebra	©
Cengage	Learning	2014	Operations	with	0	and	1:	1.	X	+	0	=	X	2.	X	+	1	=	1	1D.	X	·	1	=	X	2D.	X	·	0	=	0	Idempotent	laws:	3.	X	+	X	=	X	3D.	X	·	X	=	X	Involution	law:	4.	(X′)′	=	X	Laws	of	complementarity:	5.	X	+	X′	=	1	5D.	X	·	X′	=	0	Commutative	laws:	6.	X	+	Y	=	Y	+	X	6D.	XY	=	YX	Associative	laws:	7.	(X	+	Y)	+	Z	=	X	+	(Y	+	Z)	=X+Y+Z	7D.	(XY)Z	=
X(YZ)	=	XYZ	Distributive	laws:	8.	X(Y	+	Z)	=	XY	+	XZ	8D.	X	+	YZ	=	(X	+	Y)(X	+	Z)	DeMorgan’s	laws:	9.	(X	+	Y)′	=	X′Y′	9D.	(XY)′	=	X′	+	Y	′	The	Boolean	algebra	laws	were	given	in	pairs	to	show	the	algebra	satisfies	a	duality.	Given	a	Boolean	algebra	expression	the	dual	of	the	expression	is	obtained	by	interchanging	the	constants	0	and	1	and
interchanging	the	operations	of	AND	and	OR.	Variables	and	complements	are	left	unchanged.	The	laws	listed	in	Table	2-3	show	that	given	a	Boolean	algebra	identity,	another	identity	can	be	obtained	by	taking	the	dual	of	both	sides	of	the	identity.	The	dual	of	AND	is	OR	and	the	dual	of	OR	is	AND:	(XYZ.	.	.)D	=	X	+	Y	+	Z	+	·	·	·	(X	+	Y	+	Z	+	·	·	·)D	=
XYZ.	.	.	(2-14)	2.6	Simplification	Theorems	The	following	theorems	are	useful	in	simplifying	Boolean	expressions:	Uniting:	XY	+	XY′	=	X	(2-15)	(X	+	Y)(X	+	Y′)	=	X	(2-15D)	Absorption:	X	+	XY	=	X	(2-16)	X(X	+	Y)	=	X	(2-16D)	Boolean	Algebra	X(X′	+	Y)	=	XY	Elimination:	X	+	X′Y	=	X	+	Y	Consensus:	XY	+	X′Z	+	YZ	=	XY	+	X′Z	(X	+	Y)(X′	+	Z)(Y	+	Z)	=	(X	+
Y)(X′	+	Z)	(2-17)	47	(2-17D)	(2-18)	(2-18D)	In	each	case,	one	expression	can	be	replaced	by	a	simpler	one.	Since	each	expression	corresponds	to	a	circuit	of	logic	gates,	simplifying	an	expression	leads	to	simplifying	the	corresponding	logic	circuit.	In	switching	algebra,	each	of	the	above	theorems	can	be	proved	by	using	a	truth	table.	In	a	general
Boolean	algebra,	they	must	be	proved	algebraically	starting	with	the	basic	theorems.	Proof	of	(2-15):	Proof	of	(2-16):	Proof	of	(2-17):	Proof	of	(2-18):	XY	+	XY′	=	X(Y	+	Y′)	=	X(1)	=	X	X	+	XY	=	X	·	1	+	XY	=	X(1	+	Y)	=	X	·	1	=	X	X	+	X′Y	=	(X	+	X′)(X	+	Y)	=	1(X	+	Y)	=	X	+	Y	XY	+	X′Z	+	YZ	=	XY	+	X′Z	+	(1)YZ	=	XY	+	X′Z	+	(X	+	X′)YZ	=	XY	+	XYZ	+	X′Z	+
X′YZ	=	XY	+	X′Z	(using	absorption	twice)	After	proving	one	theorem	in	a	pair	of	theorems,	the	other	theorem	follows	by	the	duality	property	of	Boolean	algebra.	Alternatively,	the	other	theorem	can	be	proved	using	the	dual	steps	used	to	prove	the	first	theorem.	For	example,	(2-16D)	can	be	proved	using	the	dual	steps	of	the	(2-16)	proof.	Proof	of	(2-
16D):	X(X	+	Y)	=	(X	+	0)(X	+	Y)	=	X	+	(0	·	Y)	=	X	+	0	=	X	We	will	illustrate	the	elimination	theorem	using	switches.	Consider	the	following	circuit:	Y	X	Y′	Its	transmission	is	T	=	Y	+	XY′	because	there	is	a	closed	circuit	between	the	terminals	if	switch	Y	is	closed	or	switch	X	is	closed	and	switch	Y′	is	closed.	The	following	circuit	is	equivalent	because	if
Y	is	closed	(Y	=	1)	both	circuits	have	a	transmission	of	1;	if	Y	is	open	(Y′	=	1)	both	circuits	have	a	transmission	of	X.	Y	X	The	following	example	illustrates	simplification	of	a	logic	gate	circuit	using	one	of	the	theorems.	In	Figure	2-4,	the	output	of	circuit	(a)	is	F	=	A(A′	+	B)	48	Unit	2	By	the	elimination	theorem,	the	expression	for	F	simplifies	to	AB.
Therefore,	circuit	(a)	can	be	replaced	with	the	equivalent	circuit	(b).	FIGURE	2-4	Equivalent	Gate	Circuits	A	B	+	A	F	A	(a)	©	Cengage	Learning	2014	F	B	(b)	Any	expressions	can	be	substituted	for	X	and	Y	in	the	theorems.	Example	1	Simplify	Z	=	A′BC	+	A′	This	expression	has	the	same	form	as	absorption	theorem	(2-16)	if	we	let	X	=	A′	and	Y	=	BC.
Therefore,	the	expression	simplifies	to	Z	=	X	+	XY	=	X	=	A′.	Example	2	Simplify	Z	=	[A	+	B′C	+	D	+	EF]	[A	+	B′C	+	(D	+	EF)′]][]	Substituting:	Z	=	[X	+	Y	+	Y′	X	Then,	by	the	uniting	theorem	(2-15D),	the	expression	reduces	to	Z	=	X	=	A	+	B′C	Example	3	Simplify	Substituting:	Z	=	(AB	+	C)	(B′D	+	C′E′)	+	(AB	+	C)′	Z=	X′	Y	+	X	By	the	elimination
theorem	(2-17):	Z	=	X	+	Y	=	B′D	+	C′E′	+	(AB	+	C)′	Note	that	in	this	example	we	let	X	=	(AB	+	C)′	rather	than	(AB	+	C)	in	order	to	match	the	form	of	the	elimination	theorem	(2-17).	The	theorems	of	Boolean	algebra	that	we	have	derived	are	summarized	in	Table	2-4.	The	theorem	for	multiplying	out	and	factoring	is	derived	in	Unit	3.
www.allitebooks.com	Boolean	Algebra	TABLE	2-4	Theorems	of	Boolean	Algebra	©	Cengage	Learning	2014	Uniting	theorems:	1.	XY	+	XY′	=	X	1D.	(X	+	Y)(X	+	Y′)	=	X	Absorption	theorems:	2.	X	+	XY	=	X	2D.	X(X	+	Y)	=	X	Elimination	theorems:	3.	X	+	X′Y	=	X	+	Y	3D.	X(X′	+	Y)	=	XY	Duality:	4.	(X	+	Y	+	Z	+	·	·	·)D	=	XYZ.	.	.	4D.	(XYZ.	.	.)D	=	X	+	Y	+	Z
+	·	·	·	49	Theorems	for	multiplying	out	and	factoring:	5D.	XY	+	X′Z	=	(X	+	Z)(X′	+	Y)	5.	(X	+	Y)(X′	+	Z)	=	XZ	+	X′Y	Consensus	theorems:	6.	XY	+	YZ	+	X′Z	=	XY	+	X′Z	6D.(X	+	Y)(Y	+	Z)(X′	+	Z)	=	(X	+	Y)(X′	+	Z)	2.7	Multiplying	Out	and	Factoring	The	two	distributive	laws	are	used	to	multiply	out	an	expression	to	obtain	a	sum-ofproducts	(SOP)	form.
An	expression	is	said	to	be	in	sum-of-products	form	when	all	products	are	the	products	of	single	variables.	This	form	is	the	end	result	when	an	expression	is	fully	multiplied	out.	It	is	usually	easy	to	recognize	a	sum-of-products	expression	because	it	consists	of	a	sum	of	product	terms:	AB′	+	CD′E	+	AC′E′	(2-19)	However,	in	degenerate	cases,	one	or
more	of	the	product	terms	may	consist	of	a	single	variable.	For	example,	ABC′	+	DEFG	+	H	(2-20)	A	+	B′	+	C	+	D′E	(2-21)	and	are	still	considered	to	be	in	sum-of-products	form.	The	expression	(A	+	B)CD	+	EF	is	not	in	sum-of-products	form	because	the	A	+	B	term	enters	into	a	product	but	is	not	a	single	variable.	When	multiplying	out	an	expression,
apply	the	second	distributive	law	first	when	possible.	For	example,	to	multiply	out	(A	+	BC)(A	+	D	+	E)	let	X	=	A,	Y	=	BC,	Z=D+E	50	Unit	2	Then	(X	+	Y)(X	+	Z)	=	X	+	YZ	=	A	+	BC(D	+	E)	=	A	+	BCD	+	BCE	Of	course,	the	same	result	could	be	obtained	the	hard	way	by	multiplying	out	the	original	expression	completely	and	then	eliminating
redundant	terms:	(A	+	BC)(A	+	D	+	E)	=	A	+	AD	+	AE	+	ABC	+	BCD	+	BCE	=	A(1	+	D	+	E	+	BC)	+	BCD	+	BCE	=	A	+	BCD	+	BCE	You	will	save	yourself	a	lot	of	time	if	you	learn	to	apply	the	second	distributive	law	instead	of	doing	the	problem	the	hard	way.	Both	distributive	laws	can	be	used	to	factor	an	expression	to	obtain	a	product-ofsums	form.
An	expression	is	in	product-of-sums	(POS)	form	when	all	sums	are	the	sums	of	single	variables.	It	is	usually	easy	to	recognize	a	product-of-sums	expression	since	it	consists	of	a	product	of	sum	terms:	(A	+	B′)(C	+	D′	+	E)(A	+	C′	+	E′)	(2-22)	However,	in	degenerate	cases,	one	or	more	of	the	sum	terms	may	consist	of	a	single	variable.	For	example,	(A	+
B)(C	+	D	+	E)F	(2-23)	AB′C(D′	+	E)	(2-24)	and	are	still	considered	to	be	in	product-of-sums	form,	but	(A	+	B)(C	+	D)	+	EF	is	not.	An	expression	is	fully	factored	iff	it	is	in	product-of-sums	form.	Any	expression	not	in	this	form	can	be	factored	further.	The	following	examples	illustrate	how	to	factor	using	the	second	distributive	law:	Example	1	Factor	A	+
B′CD.	This	is	of	the	form	X	+	YZ	where	X	=	A,	Y	=	B′,	and	Z	=	CD,	so	A	+	B′CD	=	(X	+	Y)(X	+	Z)	=	(A	+	B′)(A	+	CD)	A	+	CD	can	be	factored	again	using	the	second	distributive	law,	so	A	+	B′CD	=	(A	+	B′)(A	+	C)(A	+	D)	Example	2	Factor	AB′	+	C′D.	AB′	+	C′D	=	(AB′	+	C′)(AB′	+	D)	←	note	how	X	+	YZ	=	(X	+	Y)(X	+	Z)	was	applied	here	=	(A	+	C′)(B′	+
C′)(A	+	D)(B′	+	D)	←	the	second	distributive	law	was	applied	again	to	each	term	Boolean	Algebra	Example	3	51	Factor	C′D	+	C′E′	+	G′H.	C′D	+	C′E′	+	G′H	=	C′(D	+	E′)	+	G′H	=	(C′	+	G′H)((D	+	E′)	+	G′H)	=	(C′	+	G′)(C′	+	H)(D	+	E′	+	G′)(D	+	E′	+	H)	←	first	apply	the	ordinary	distributive	law,	XY	+	XZ	=	X(Y	+	Z)	←	then	apply	the	second	distributive	law
←	now	identify	X,	Y,	and	Z	in	each	expression	and	complete	the	factoring	As	in	Example	3,	the	ordinary	distributive	law	should	be	applied	before	the	second	law	when	factoring	an	expression.	A	sum-of-products	expression	can	always	be	realized	directly	by	one	or	more	AND	gates	feeding	a	single	OR	gate	at	the	circuit	output.	Figure	2-5	shows	the
circuits	for	Equations	(2-19)	and	(2-21).	Inverters	required	to	generate	the	complemented	variables	have	been	omitted.	A	product-of-sums	expression	can	always	be	realized	directly	by	one	or	more	OR	gates	feeding	a	single	AND	gate	at	the	circuit	output.	Figure	2-6	shows	the	circuits	for	Equations	(2-22)	and	(2-24).	Inverters	required	to	generate	the
complements	have	been	omitted.	The	circuits	shown	in	Figures	2-5	and	2-6	are	often	referred	to	as	two-level	circuits	because	they	have	a	maximum	of	two	gates	in	series	between	an	input	and	the	circuit	output.	FIGURE	2-5	Circuits	for	Equations	(2-19)	and	(2-21)	©	Cengage	Learning	2014	FIGURE	2-6	Circuits	for	Equations	(2-22)	and	(2-24)	©
Cengage	Learning	2014	A	B′	D′	C	D′	E	+	E	A	B′	C	A	C′	E′	A	B′	+	C	D′	E	+	A	C′	E′	+	D′	E	+	A	B′	C	+	52	Unit	2	2.8	Complementing	Boolean	Expressions	The	inverse	or	complement	of	any	Boolean	expression	can	easily	be	found	by	successively	applying	DeMorgan’s	laws.	DeMorgan’s	laws	are	easily	generalized	to	n	variables:	(X1	+	X2	+	X3	+	·	·	·	+	Xn)′	=
X1	′	X2	′	X3	′	.	.	.	Xn	′	(2-25)	(X1X2X3	.	.	.	Xn)′	=	X1′	+	X2′	+	X3	′	+	·	·	·	+	Xn	′	(2-26)	For	example,	for	n	=	3,	(X1	+	X2	+	X3)′	=	(X1	+	X2)′X′	3	=	X′	1X′	2	X′	3	Referring	to	the	OR	operation	as	the	logical	sum	and	the	AND	operation	as	logical	product,	DeMorgan’s	laws	can	be	stated	as	The	complement	of	the	product	is	the	sum	of	the	complements.	The
complement	of	the	sum	is	the	product	of	the	complements.	To	form	the	complement	of	an	expression	containing	both	OR	and	AND	operations,	DeMorgan’s	laws	are	applied	alternately.	Example	1	To	find	the	complement	of	(A′	+	B)C′,	first	apply	(2-13)	and	then	(2-12).	[(A′	+	B)C′]	′	=	(A′	+	B)′	+	(C′)′	=	AB′	+	C	Example	2	[(AB′	+	C)D′	+	E]′	=	=	=	=	[
(AB′	+	C)D′]′E′	[(AB′	+	C)′	+	D]	E′	[(AB′)′C′	+	D]	E′	[(A′	+	B)C′	+	D]	E′	(by	(2-12))	(by	(2-13))	(by	(2-12))	(by	(2-13))	(2-27)	Note	that	in	the	final	expressions,	the	complement	operation	is	applied	only	to	single	variables.	Boolean	Algebra	53	The	inverse	of	F	=	A′B	+	AB′	is	F′	=	(A′B	+	AB′)′	=	(A′B)′(AB′)′	=	(A	+	B′)(A′	+	B)	=	AA′	+	AB	+	B′A′	+	BB′	=	A′B′	+
AB	We	will	verify	that	this	result	is	correct	by	constructing	a	truth	table	for	F	and	F′	:	A	0	0	1	1	B	0	1	0	1	A′B	0	1	0	0	AB′	0	0	1	0	F	=	A′B	+	AB′	0	1	1	0	A′B′	1	0	0	0	AB	0	0	0	1	F′	=	A′B′	+	AB	1	0	0	1	In	the	table,	note	that	for	every	combination	of	values	of	A	and	B	for	which	F	=	0,	F′	=	1;	and	whenever	F	=	1,	F′	=	0.	The	dual	of	an	expression	may	be
found	by	complementing	the	entire	expression	and	then	complementing	each	individual	variable.	For	example,	to	find	the	dual	of	AB′	+	C,	(AB′	+	C)′	=	(AB′)′C′	=	(A′	+	B)′C′,	so	(AB′	+	C)D	=	(A	+	B′)C	Problems	2.1	Prove	the	following	theorems	algebraically:	(a)	X(X′	+	Y)	=	XY	(b)	X	+	XY	=	X	(c)	XY	+	XY′	=	X	(d)	(A	+	B)(A	+	B′)	=	A	2.2	Illustrate	the
following	theorems	using	circuits	of	switches:	(a)	X	+	XY	=	X	(b)	X	+	YZ	=	(X	+	Y)(X	+	Z)	In	each	case,	explain	why	the	circuits	are	equivalent.	2.3	Simplify	each	of	the	following	expressions	by	applying	one	of	the	theorems.	State	the	theorem	used.	(a)	X′	Y′	Z	+	(X′	Y′	Z)′	(b)	(AB′	+	CD)(B′E	+	CD)	(c)	ACF	+	AC′F	(d)	A(C	+	D′B)	+	A′	(e)	(A′B	+	C	+	D)(A′B
+	D)	(f)	(A	+	BC)	+	(DE	+	F)(A	+	BC)′	2.4	For	each	of	the	following	circuits,	find	the	output	and	design	a	simpler	circuit	having	the	same	output.	(Hint:	Find	the	circuit	output	by	first	finding	the	output	of	each	gate,	going	from	left	to	right,	and	simplifying	as	you	go.)	54	Unit	2	+	A	1	+	E	+	F	B	C	D	(a)	A	+	B	B	B	A	B	+	+	A	Y	(b)	2.5	Multiply	out	and
simplify	to	obtain	a	sum	of	products:	(a)	(A	+	B)(C	+	B)(D′	+	B)(ACD′	+	E)	(b)	(A′	+	B	+	C′)(A′	+	C′	+	D)(B′	+	D′)	2.6	Factor	each	of	the	following	expressions	to	obtain	a	product	of	sums:	(a)	AB	+	C′D′	(b)	WX	+	WY′X	+	ZYX	(d)	XYZ	+	W′Z	+	XQ′Z	(c)	A′BC	+	EF	+	DEF′	(e)	ACD′	+	C′D′	+	A′C	(f)	A	+	BC	+	DE	(The	answer	to	(f)	should	be	the	product	of
four	terms,	each	a	sum	of	three	variables.)	2.7	Draw	a	circuit	that	uses	only	one	AND	gate	and	one	OR	gate	to	realize	each	of	the	following	functions:	(a)	(A	+	B	+	C	+	D)(A	+	B	+	C	+	E)(A	+	B	+	C	+	F)	(b)	WXYZ	+	VXYZ	+	UXYZ	2.8	Simplify	the	following	expressions	to	a	minimum	sum	of	products.	(a)	[(AB)′	+	C′D]	′	(b)	[A	+	B(C′	+	D)]	′	(c)	((A	+
B′)C)′(A	+	B)(C	+	A)′	2.9	Find	F	and	G	and	simplify:	A	+	B	+	A	F	+	(a)	R	S	T	R	S	+	P	T	+	T	(b)	G	Boolean	Algebra	55	2.10	Illustrate	the	following	equations	using	circuits	of	switches:	(a)	XY	+	XY′	=	X	(b)	(X	+	Y′)Y	=	XY	(c)	X	+	X′ZY	=	X	+	YZ	(d)	(A	+	B)C	+	(A	+	B)C′	=	A	+	B	(e)	(X	+	Y)(X	+	Z)	=	X	+	YZ	(f)	X(X	+	Y)	=	X	2.11	Simplify	each	of	the	following
expressions	by	applying	one	of	the	theorems.	State	the	theorem	used.	(b)	AB(C′	+	D)	+	B(C′	+	D)	(a)	(A′	+	B′	+	C)(A′	+	B′	+	C)′	(c)	AB	+	(C′	+	D)(AB)′	(d)	(A′BF	+	CD′)(A′BF	+	CEG)	(e)	[AB′	+	(C	+	D)′	+	E′F]	(C	+	D)	(f)	A′(B	+	C)(D′E	+	F)′	+	(D′E	+	F)	2.12	Simplify	each	of	the	following	expressions	by	applying	one	of	the	theorems.	State	the	theorem
used.	(a)	(X	+	Y′Z)	+	(X	+	Y′Z)′	(b)	[W	+	X′(Y	+	Z)][W′	+	X′(Y	+	Z)]	(c)	(V′W	+	UX)′(UX	+	Y	+	Z	+	V′W)	(d)	(UV′	+	W′X)(UV′	+	W′X	+	Y′Z)	(e)	(W′	+	X)(Y	+	Z′)	+	(W′	+	X)′(Y	+	Z′)	(f)	(V′	+	U	+	W)	[(W	+	X)	+	Y	+	UZ′]	+	[(W	+	X)	+	UZ′	+	Y]	2.13	For	each	of	the	following	circuits,	find	the	output	and	design	a	simpler	circuit	that	has	the	same	output.
(Hint:	Find	the	circuit	output	by	first	finding	the	output	of	each	gate,	going	from	left	to	right,	and	simplifying	as	you	go.)	A	+	(a)	+	B	F1	+	A	+	(b)	F2	B	A	B	+	F3	(c)	C	A	B	D	+	+	56	Unit	2	A	B	+	A	B	+	+	C	(d)	Z	D	C	2.14	Draw	a	circuit	that	uses	only	one	AND	gate	and	one	OR	gate	to	realize	each	of	the	following	functions:	(a)	ABCF	+	ACEF	+	ACDF	(b)
(V	+	W	+	Y	+	Z)(U	+	W	+	Y	+	Z)(W	+	X	+	Y	+	Z)	2.15	Use	only	DeMorgan’s	relationships	and	Involution	to	find	the	complements	of	the	following	functions:	(a)	f(A,	B,	C,	D)	=	[A	+	(BCD)′][(AD)′	+	B(C′	+	A)]	(b)	f(A,	B,	C,	D)	=	AB′C	+	(A′	+	B	+	D)(ABD′	+	B′)	2.16	Using	just	the	definition	of	the	dual	of	a	Boolean	algebra	expression,	find	the	duals	of
the	following	expressions:	(a)	f(A,	B,	C,	D)	=	[A	+	(BCD)′][(AD)′	+	B(C′	+	A)]	(b)	f(A,	B,	C,	D)	=	AB′C	+	(A′	+	B	+	D)(ABD′	+	B′)	2.17	For	the	following	switching	circuit,	find	the	logic	function	expression	describing	the	circuit	by	the	three	methods	indicated,	simplify	each	expression,	and	show	they	are	equal.	(a)	subdividing	it	into	series	and	parallel
connections	of	subcircuits	until	single	switches	are	obtained	(b)	finding	all	paths	through	the	circuit	(sometimes	called	tie	sets),	forming	an	AND	term	for	each	path	and	ORing	the	AND	terms	together	(c)	finding	all	ways	of	breaking	all	paths	through	the	circuit	(sometimes	called	cut	sets),	forming	an	OR	term	for	each	cut	set	and	ANDing	the	OR	terms
together.	A′	B′	A	C	B	C′	2.18	For	each	of	the	following	Boolean	(or	switching)	algebra	expressions,	indicate	which,	if	any,	of	the	following	terms	describe	the	expression:	product	term,	sum-of-products,	sum	term,	and	product-of-sums.	(More	than	one	may	apply.)	(b)	XY′	+	YZ	(a)	X′Y	(c)	(X′	+	Y)(WX	+	Z)	(d)	X	+	Z	(e)	(X′	+	Y)(W	+	Z)(X	+	Y′	+	Z′)	Boolean
Algebra	57	2.19	Construct	a	gate	circuit	using	AND,	OR,	and	NOT	gates	that	corresponds	one	to	one	with	the	following	switching	algebra	expression.	Assume	that	inputs	are	available	only	in	uncomplemented	form.	(Do	not	change	the	expression.)	(WX′	+	Y)	[(W	+	Z)′	+	(XYZ′)]	2.20	For	the	following	switch	circuit:	(a)	derive	the	switching	algebra
expression	that	corresponds	one	to	one	with	the	switch	circuit.	(b)	derive	an	equivalent	switch	circuit	with	a	structure	consisting	of	a	parallel	connection	of	groups	of	switches	connected	in	series.	(Use	9	switches.)	(c)	derive	an	equivalent	switch	circuit	with	a	structure	consisting	of	a	series	connection	of	groups	of	switches	connected	in	parallel.	(Use	6
switches.)	A′	D	C	B′	A	C′	2.21	In	the	following	circuit,	F	=	(A′	+	B)C.	Give	a	truth	table	for	G	so	that	H	is	as	specified	in	its	truth	table.	If	G	can	be	either	0	or	1	for	some	input	combination,	leave	its	value	unspecified.	A	B	C	F	+	A	B	C	G	H	A	0	0	0	0	1	1	1	1	B	0	0	1	1	0	0	1	1	C	0	1	0	1	0	1	0	1	H	0	1	1	1	0	1	0	1	2.22	Factor	each	of	the	following	expressions	to
obtain	a	product	of	sums:	(a)	A′B′	+	A′CD	+	A′DE′	(b)	H′I′	+	JK	(c)	A′BC	+	A′B′C	+	CD′	(d)	A′B′	+	(CD′	+	E)	(e)	A′B′C	+	B′CD′	+	EF′	(f)	WX′Y	+	W′X′	+	W′Y′	2.23	Factor	each	of	the	following	expressions	to	obtain	a	product	of	sums:	(a)	W	+	U′YV	(b)	TW	+	UY′	+	V	(c)	A′B′C	+	B′CD′	+	B′E′	(d)	ABC	+	ADE′	+	ABF′	2.24	Simplify	the	following	expressions	to	a
minimum	sum	of	products.	Only	individual	variables	should	be	complemented.	(a)	[(XY′)′	+	(X′	+	Y)′Z]	(b)	(X	+	(Y′(Z	+	W)′)′)′	(c)	[(A′	+	B′)′	+	(A′B′C)′	+	C′D]	′	(d)	(A	+	B)CD	+	(A	+	B)′	58	Unit	2	2.25	For	each	of	the	following	functions	find	a	sum-of-products	expression	for	F′	.	(a)	F(P,	Q,	R,	S)	=	(R′	+	PQ)S	(b)	F(W,	X,	Y,	Z)	=	X	+	YZ(W	+	X′)	(c)	F(A,	B,	C,
D)	=	A′	+	B′	+	ACD	2.26	Find	F,	G,	and	H,	and	simplify:	A	(a)	+	B	B	+	C	F	A	B	G	(b)	C	+	W	X	(c)	H	Y	Z	+	2.27	Draw	a	circuit	that	uses	two	OR	gates	and	two	AND	gates	to	realize	the	following	function:	F	=	(V	+	W	+	X)(V	+	X	+	Y)(V	+	Z)	2.28	Draw	a	circuit	to	realize	the	function:	F	=	ABC	+	A′BC	+	AB′C	+	ABC′	(a)	using	one	OR	gate	and	three	AND
gates.	The	AND	gates	should	have	two	inputs.	(b)	using	two	OR	gates	and	two	AND	gates.	All	of	the	gates	should	have	two	inputs.	Boolean	Algebra	2.29	Prove	the	following	equations	using	truth	tables:	(a)	(X	+	Y)(X′	+	Z)	=	XZ	+	X′Y	(b)	(X	+	Y)(Y	+	Z)(X′	+	Z)	=	(X	+	Y)(X′	+	Z)	(c)	XY	+	YZ	+	X′Z	=	XY	+	X′Z	(d)	(A	+	C)(AB	+	C′)	=	AB	+	AC′	(e)	W′XY	+
WZ	=	(W′	+	Z)(W	+	XY)	(Note:	Parts	(a),	(b),	and	(c)	are	theorems	that	will	be	introduced	in	Unit	3.)	2.30	Show	that	the	following	two	gate	circuits	realize	the	same	function.	X	+	Y	+f	F	Z	(a)	X	Y	+f	Z	+f	+f	(b)	G	59	UNIT	Boolean	Algebra	(Continued)	3	Objectives	When	you	complete	this	unit,	you	should	know	from	memory	and	be	able	to	use	any	of	the
laws	and	theorems	of	Boolean	algebra	listed	in	Unit	2.	Specifically,	you	should	be	able	to	60	1.	Apply	these	laws	and	theorems	to	the	manipulation	of	algebraic	expressions	including:	a.	Simplifying	an	expression	b.	Finding	the	complement	of	an	expression	c.	Multiplying	out	and	factoring	an	expression	2.	Prove	any	of	the	theorems	using	a	truth	table
or	give	an	algebraic	proof.	3.	Define	the	exclusive-OR	and	equivalence	operations.	State,	prove,	and	use	the	basic	theorems	that	concern	these	operations.	4.	Use	the	consensus	theorem	to	delete	terms	from	and	add	terms	to	a	switching	algebra	expression.	5.	Given	an	equation,	prove	algebraically	that	it	is	valid	or	show	that	it	is	not	valid.	Boolean
Algebra	(Continued)	61	Study	Guide	1.	Study	Section	3.1,	Multiplying	Out	and	Factoring	Expressions.	(a)	List	three	laws	or	theorems	which	are	useful	when	multiplying	out	or	factoring	expressions.	(b)	Use	Equation	(3-3)	to	factor	each	of	the	following:	ab′c	+	bd	=	abc	+	(ab)′d	=	(c)	In	the	following	example,	first	group	the	terms	so	that	(3-2)	can	be
applied	two	times.	F1	=	(x	+	y′	+	z)(w′	+	x′	+	y)(w	+	x	+	y′)(w′	+	y	+	z′)	After	applying	(3-2),	apply	(3-3)	and	then	finish	multiplying	out	by	using	(3-1).	If	we	did	not	use	(3-2)	and	(3-3)	and	used	only	(3-1)	on	the	original	F1	expression,	we	would	generate	many	more	terms:	F1	=	(w′x	+	w′y′	+	w′z	+	xx′	+	x′y′	+	x′z	+	xy	+	yy′	+	yz)	(ww′	+	w′x	+	w′y′	+	wy
+	xy	+	yy′	+	wz′	+	xz′	+	y′z′)	(w′x	+	w′xy′	+	w′xz	+	·	·	·	+	yzy′z′)	=	49	terms	in	all	This	is	obviously	a	very	inefficient	way	to	proceed!	The	moral	to	this	story	is	to	first	group	the	terms	and	apply	(3-2)	and	(3-3)	where	possible.	(d)	Work	Programmed	Exercise	3.1.	Then	work	Problem	3.6,	being	careful	not	to	introduce	any	unnecessary	terms	in	the	process.
(e)	In	Unit	2	you	learned	how	to	factor	a	Boolean	expression,	using	the	two	distributive	laws.	In	addition,	this	unit	introduced	use	of	the	theorem	XY	+	X′Z	=	(X	+	Z)(X′	+	Y)	in	the	factoring	process.	Careful	choice	of	the	order	in	which	these	laws	and	theorems	are	applied	may	cut	down	the	amount	of	work	required	to	factor	an	expression.	When
factoring,	it	is	best	to	apply	Equation	(3-1)	first,	62	Unit	3	using	as	X	the	variable	or	variables	which	appear	most	frequently.	Then	Equations	(3-2)	and	(3-3)	can	be	applied	in	either	order,	depending	on	circumstances.	(f)	Work	Programmed	Exercise	3.2.	Then	work	Problem	3.7.	2.	Checking	your	answers:	A	good	way	to	partially	check	your	answers	for
correctness	is	to	substitute	0’s	or	1’s	for	some	of	the	variables.	For	example,	if	we	substitute	A	=	1	in	the	first	and	last	expression	in	Equation	(3-5),	we	get	1	·	C	+	0	·	BD′	+	0	·	BE	+	0	·	C′DE	=	(1	+	B	+	C′)(1	+	B	+	D)	·	(1	+	B	+	E)(1	+	D′	+	E)(0	+	C)	C=1·1·1·1·C✓	Similarly,	substituting	A	=	0,	B	=	0,	we	get	0	+	0	+	0	+	C′DE	=	(0	+	C′)(0	+	D)(0	+	E)
(D′	+	E)(1	+	C)	=	C′DE	✓	Verify	that	the	result	is	also	correct	when	A	=	0	and	B	=	1.	3.	The	method	which	you	use	to	get	your	answer	is	very	important	in	this	unit.	If	it	takes	you	two	pages	of	algebra	and	one	hour	of	time	to	work	a	problem	that	can	be	solved	in	10	minutes	with	three	lines	of	work,	you	have	not	learned	the	material	in	this	unit!	Even	if
you	get	the	correct	answer,	your	work	is	not	satisfactory	if	you	worked	the	problem	by	an	excessively	long	and	time-consuming	method.	It	is	important	that	you	learn	to	solve	simple	problems	in	a	simple	manner—otherwise,	when	you	are	asked	to	solve	a	complex	problem,	you	will	get	bogged	down	and	never	get	the	answer.	When	you	are	given	a
problem	to	solve,	do	not	just	plunge	in,	but	first	ask	yourself,	“What	is	the	easiest	way	to	work	this	problem?”	For	example,	when	you	are	asked	to	multiply	out	an	expression,	do	not	just	multiply	it	out	by	brute	force,	term	by	term.	Instead,	ask	yourself,	“How	can	I	group	the	terms	and	which	theorems	should	I	apply	first	in	order	to	reduce	the	amount
of	work?”	(See	Study	Guide	Part	1.)	After	you	have	worked	out	Problems	3.6	and	3.7,	compare	your	solutions	with	those	in	the	solution	book.	If	your	solution	required	substantially	more	work	than	the	one	in	the	solution	book,	rework	the	problem	and	try	to	get	the	answer	in	a	more	straightforward	manner.	Boolean	Algebra	(Continued)	4.	63	Study
Section	3.2,	Exclusive-OR	and	Equivalence	Operations.	(a)	Prove	Theorems	(3-8)	through	(3-13).	You	should	be	able	to	prove	these	both	algebraically	and	by	using	a	truth	table.	(b)	Show	that	(xy′	+	x′y)′	=	xy	+	x′y′.	Memorize	this	result.	(c)	Prove	Theorem	(3-15).	(d)	Show	that	(x	≡	0)	=	x′,	(x	≡	x)	=	1,	and	(x	≡	y)′	=	(x	≡	y′).	(e)	Express	(x	≡	y)′	in	terms
of	exclusive	OR.	(f)	Work	Problems	3.8	and	3.9.	5.	Study	Section	3.3,	The	Consensus	Theorem.	The	consensus	theorem	is	an	important	method	for	simplifying	switching	functions.	(a)	In	each	of	the	following	expressions,	find	the	consensus	term	and	eliminate	it:	abc′d	+	a′be	+	bc′de	(a′	+	b	+	c)(a	+	d)(b	+	c	+	d)	ab′c	+	a′bd	+	bcd′	+	a′bc	(b)	Eliminate
two	terms	from	the	following	expression	by	applying	the	consensus	theorem:	A′B′C	+	BC′D′	+	A′CD	+	AB′D′	+	BCD	+	AC′D′	(Hint:	First,	compare	the	first	term	with	each	of	the	remaining	terms	to	see	if	a	consensus	exists,	then	compare	the	second	term	with	each	of	the	remaining	terms,	etc.)	64	Unit	3	(c)	Study	the	example	given	in	Equations	(3-22)
and	(3-23)	carefully.	Now	let	us	start	with	the	four-term	form	of	the	expression	(Equation	3-22):	A′C′D	+	A′BD	+	ABC	+	ACD′	Can	this	be	reduced	directly	to	three	terms	by	the	application	of	the	consensus	theorem?	Before	we	can	reduce	this	expression,	we	must	add	another	term.	Which	term	can	be	added	by	applying	the	consensus	theorem?	Add	this
term,	and	then	reduce	the	expression	to	three	terms.	After	this	reduction,	can	the	term	which	was	added	be	removed?	Why	not?	(d)	Eliminate	two	terms	from	the	following	expression	by	applying	the	dual	consensus	theorem:	(a′	+	c′	+	d)(a′	+	b	+	c)(a	+	b	+	d)(a′	+	b	+	d)(b	+	c′	+	d)	Use	brackets	to	indicate	how	you	formed	the	consensus	terms.	(Hint:
First,	find	the	consensus	of	the	first	two	terms	and	eliminate	it.)	(e)	Derive	Theorem	(3-3)	by	using	the	consensus	theorem.	(f)	Work	Programmed	Exercise	3.3.	Then	work	Problem	3.10.	6.	Study	Section	3.4,	Algebraic	Simplification	of	Switching	Expressions.	(a)	What	theorems	are	used	for:	Combining	terms?	Eliminating	terms?	Eliminating	literals?
Adding	redundant	terms?	Factoring	or	multiplying	out?	(b)	Note	that	in	the	example	of	Equation	(3-27),	the	redundant	term	WZ′	was	added	and	then	was	eliminated	later	after	it	had	been	used	to	eliminate	another	term.	Why	was	it	possible	to	eliminate	WZ′	in	this	example?	Boolean	Algebra	(Continued)	65	If	a	term	has	been	added	by	the	consensus
theorem,	it	may	not	always	be	possible	to	eliminate	the	term	later	by	the	consensus	theorem.	Why?	(c)	You	will	need	considerable	practice	to	develop	skill	in	simplifying	switching	expressions.	Work	through	Programmed	Exercises	3.4	and	3.5.	(d)	Work	Problem	3.11.	(e)	When	simplifying	an	expression	using	Boolean	algebra,	two	frequently	asked
questions	are	(1)	Where	do	I	begin?	(2)	How	do	I	know	when	I	am	finished?	In	answer	to	(1),	it	is	generally	best	to	try	simple	techniques	such	as	combining	terms	or	eliminating	terms	and	literals	before	trying	more	complicated	things	such	as	using	the	consensus	theorem	or	adding	redundant	terms.	Question	(2)	is	generally	difficult	to	answer	because
it	may	be	impossible	to	simplify	some	expressions	without	first	adding	redundant	terms.	We	will	usually	tell	you	how	many	terms	to	expect	in	the	minimum	solution	so	that	you	will	not	have	to	waste	time	trying	to	simplify	an	expression	which	is	already	minimized.	In	Units	5	and	6,	you	will	learn	systematic	techniques	which	will	guarantee	finding	the
minimum	solution.	7.	Study	Section	3.5,	Proving	Validity	of	an	Equation.	(a)	When	attempting	to	prove	that	an	equation	is	valid,	is	it	permissible	to	add	the	same	expression	to	both	sides?	Explain.	(b)	Work	Problem	3.12.	(c)	Show	that	(3-33)	and	(3-34)	are	true	by	considering	both	x	=	0	and	x	=	1.	(d)	Given	that	a′(b	+	d′)	=	a′(b	+	e′),	the	following
“proof”	shows	that	d	=	e:	a′(b	+	d′)	=	a′(b	+	e′)	a	+	b′d	=	a	+	b′e	b′d	=	b′e	d=e	State	two	things	that	are	wrong	with	the	“proof.”	Give	a	set	of	values	for	a,	b,	d,	and	e	that	demonstrates	that	the	result	is	incorrect.	8.	Reread	the	objectives	of	this	unit.	When	you	take	the	readiness	test,	you	will	be	expected	to	know	from	memory	the	laws	and	theorems
listed	in	Unit	2.	Where	appropriate,	you	should	know	them	“forward	and	backward”;	that	is,	given	either	side	of	the	equation,	you	should	be	able	to	supply	the	other.	Test	yourself	to	see	if	you	can	do	this.	When	you	are	satisfied	that	you	can	meet	the	objectives,	take	the	readiness	test.	Boolean	Algebra	(Continued)	In	this	unit	we	continue	our	study	of
Boolean	algebra	to	learn	additional	methods	for	manipulating	Boolean	expressions.	We	introduce	another	theorem	for	multiplying	out	and	factoring	that	facilitates	conversion	between	sum-of-products	and	product-ofsums	expressions.	These	algebraic	manipulations	allow	us	to	realize	a	switching	function	in	a	variety	of	forms.	The	exclusive-OR	and
equivalence	operations	are	introduced	along	with	examples	of	their	use.	The	consensus	theorem	provides	a	useful	method	for	simplifying	an	expression.	Then	methods	for	algebraic	simplification	are	reviewed	and	summarized.	The	unit	concludes	with	methods	for	proving	the	validity	of	an	equation.	3.1	Multiplying	Out	and	Factoring	Expressions	Given
an	expression	in	product-of-sums	form,	the	corresponding	sum-of-products	expression	can	be	obtained	by	multiplying	out,	using	the	two	distributive	laws:	X(Y	+	Z)	=	XY	+	XZ	(X	+	Y)(X	+	Z)	=	X	+	YZ	(3-1)	(3-2)	In	addition,	the	following	theorem	is	very	useful	for	factoring	and	multiplying	out:	$'&	(X('''''*	+	Y)(X′	+	Z)	=	XZ	+	X′Y	(3-3)	Note	that	the
variable	that	is	paired	with	X	on	one	side	of	the	equation	is	paired	with	X′	on	the	other	side,	and	vice	versa.	In	switching	algebra,	(3-3)	can	be	proved	by	showing	that	both	sides	of	the	equation	are	the	same	for	X	=	0	and	also	for	X	=	1.	If	X	=	0,	(3-3)	reduces	to	Y(1	+	Z)	=	0	+	1	·	Y	or	Y	=	Y.	If	X	=	1,	(3-3)	reduces	to	(1	+	Y)Z	=	Z	+	0	·	Y	or	Z	=	Z.	An
algebraic	proof	valid	in	any	Boolean	algebra	is	(X	+	Y)(X′	+	Z)	=	XX′	+	XZ	+	X′Y	+	YZ	=	0	+	XZ	+	X′Y	+	YZ	=	XZ	+	X′Y	(using	consensus)	The	following	example	illustrates	the	use	of	Theorem	(3-3)	for	factoring:	$''&	AB	+	A′C	=	(A	+	C)(A′	+	B)	('''*	66	Boolean	Algebra	(Continued)	67	Note	that	the	theorem	can	be	applied	when	we	have	two	terms,	one
which	contains	a	variable	and	another	which	contains	its	complement.	Theorem	(3-3)	is	very	useful	for	multiplying	out	expressions.	In	the	following	example,	we	can	apply	(3-3)	because	one	factor	contains	the	variable	Q,	and	the	other	factor	contains	Q′.	(Q	+	AB′)(C′D	+	Q′)	=	QC′D	+	Q′AB′	If	we	simply	multiplied	out	using	the	distributive	law,	we
would	get	four	terms	instead	of	two:	(Q	+	AB′)(C′D	+	Q′)	=	QC′D	+	QQ′	+	AB′C′D	+	AB′Q′	Because	the	term	AB′C′D	is	difficult	to	eliminate,	it	is	much	better	to	use	(3-3)	instead	of	the	distributive	law.	In	general,	when	we	multiply	out	an	expression,	we	should	use	(3-3)	along	with	(3-1)	and	(3-2).	To	avoid	generating	unnecessary	terms	when	multiplying
out,	(3-2)	and	(3-3)	should	generally	be	applied	before	(3-1),	and	terms	should	be	grouped	to	expedite	their	application.	a	a	(A	+	B	+	C′)(A	+	B	+	D)(A	+	B	+	E)(A	+	D′	+	E)(A′	+	C)	a	Example	a	a	=	(A	+	B	+	C′D)(A	+	B	+	E)	[AC	+	A′(D′	+	E)]	=	(A	+	B	+	C′DE)(AC	+	A′D′	+	A′E)	=	AC	+	ABC	+	A′BD′	+	A′BE	+	A′C′DE	(3-4)	What	theorem	was	used	to
eliminate	ABC?	(Hint:	let	X	=	AC.)	In	this	example,	if	the	ordinary	distributive	law	(3-1)	had	been	used	to	multiply	out	the	expression	by	brute	force,	162	terms	would	have	been	generated,	and	158	of	these	terms	would	then	have	to	be	eliminated.	The	same	theorems	that	are	useful	for	multiplying	out	expressions	are	useful	for	factoring.	By	repeatedly
applying	(3-1),	(3-2),	and	(3-3),	any	expression	can	be	converted	to	a	product-of-sums	form.	Example	of	Factoring	AC	+	A′BD′	+	A′BE	+	A′C′DE	=	AC	+	A′(BD′	+	BE	+	C′DE)	XZ	X′	Y	=	(A	+	BD′	+	BE	+	C′DE)	(A′	+	C)	=	[A	+	C′DE	+	B(D′	+	E)]	(A′	+	C)	X	Y	Z	68	Unit	3	=	(A	+	B	+	C′DE)(A	+	C′DE	+	D′	+	E)(A′	+	C)	=	(A	+	B	+	C′)(A	+	B	+	D)(A	+	B	+	E)(A
+	D′	+	E)(A′	+	C)	(3-5)	This	is	the	same	expression	we	started	with	in	(3-4).	3.2	Exclusive-OR	and	Equivalence	Operations	The	exclusive-OR	operation	(⊕)	is	defined	as	follows:	0⊕0=0	1⊕0=1	0⊕1=1	1⊕1=0	The	truth	table	for	X	⊕	Y	is	X	0	0	1	1	X⊕Y	0	1	1	0	Y	0	1	0	1	From	this	table,	we	can	see	that	X	⊕	Y	=	1	iff	X	=	1	or	Y	=	1,	but	not	both.	The
ordinary	OR	operation,	which	we	have	previously	defined,	is	sometimes	called	inclusive	OR	because	X	+	Y	=	1	iff	X	=	1	or	Y	=	1,	or	both.	Exclusive	OR	can	be	expressed	in	terms	of	AND	and	OR.	Because	X	⊕	Y	=	1	iff	X	is	0	and	Y	is	1	or	X	is	1	and	Y	is	0,	we	can	write	X	⊕	Y	=	X′Y	+	XY′	(3-6)	The	first	term	in	(3-6)	is	1	if	X	=	0	and	Y	=	1;	the	second	term
is	1	if	X	=	1	and	Y	=	0.	Alternatively,	we	can	derive	Equation	(3-6)	by	observing	that	X	⊕	Y	=	1	iff	X	=	1	or	Y	=	1	and	X	and	Y	are	not	both	1.	Thus,	X	⊕	Y	=	(X	+	Y)(XY)′	=	(X	+	Y)(X′	+	Y′)	=	X′Y	+	XY′	In	(3-7),	note	that	(XY)′	=	1	if	X	and	Y	are	not	both	1.	We	will	use	the	following	symbol	for	an	exclusive-OR	gate:	X	Y	⊕	X⊕Y	(3-7)	Boolean	Algebra
(Continued)	69	The	following	theorems	apply	to	exclusive	OR:	X⊕0=X	X	⊕	1	=	X′	X⊕X=0	X	⊕	X′	=	1	X	⊕	Y	=	Y	⊕	X	(commutative	law)	(X	⊕	Y)	⊕	Z	=	X	⊕	(Y	⊕	Z)	=	X	⊕	Y	⊕	Z	(associative	law)	X(Y	⊕	Z)	=	XY	⊕	XZ	(distributive	law)	(X	⊕	Y)′	=	X	⊕	Y′	=	X′	⊕	Y	=	XY	+	X′Y′	(3-8)	(3-9)	(3-10)	(3-11)	(3-12)	(3-13)	(3-14)	(3-15)	Any	of	these	theorems	can	be
proved	by	using	a	truth	table	or	by	replacing	X	⊕	Y	with	one	of	the	equivalent	expressions	from	Equation	(3-7).	Proof	of	the	distributive	law	follows:	XY	⊕	XZ	=	XY(XZ)′	+	(XY)′XZ	=	XY(X′	+	Z′)	+	(X′	+	Y′)XZ	=	XYZ′	+	XY′Z	=	X(YZ′	+	Y′Z)	=	X(Y	⊕	Z)	The	equivalence	operation	(≡)	is	defined	by	(0	≡	0)	=	1	(1	≡	0)	=	0	(0	≡	1)	=	0	(1	≡	1)	=	1	(3-16)	The
truth	table	for	X	≡	Y	is	X	0	0	1	1	Y	0	1	0	1	X≡Y	1	0	0	1	From	the	definition	of	equivalence,	we	see	that	(X	≡	Y)	=	1	iff	X	=	Y.	Because	(X	≡	Y)	=	1	iff	X	=	Y	=	1	or	X	=	Y	=	0,	we	can	write	(X	≡	Y)	=	XY	+	X′Y′	(3-17)	Equivalence	is	the	complement	of	exclusive	OR:	(X	⊕	Y)′	=	=	(X′Y	+	XY′)′	=	(X	+	Y′)(X′	+	Y)	XY	+	X′Y′	=	(X	≡	Y)	Just	as	for	exclusive	OR,
equivalence	is	commutative	and	associative.	We	will	use	the	following	symbol	for	an	equivalence	gate:	X	Y	X≡Y	(3-18)	70	Unit	3	Because	equivalence	is	the	complement	of	exclusive	OR,	an	alternate	symbol	for	the	equivalence	gate	is	an	exclusive-OR	gate	with	a	complemented	output:	X	Y	⊕	(X	⊕	Y)′	=	(X	≡	Y)	The	equivalence	gate	is	also	called	an
exclusive-NOR	gate.	In	order	to	simplify	an	expression	which	contains	AND	and	OR	as	well	as	exclusive	OR	and	equivalence,	it	is	usually	desirable	to	first	apply	(3-6)	and	(3-17)	to	eliminate	the	⊕	and	≡	operations.	As	an	example,	we	will	simplify	F	=	(A′B	≡	C)	+	(B	⊕	AC′)	By	(3-6)	and	(3-17),	F	=	[(A′B)C	+	(A′B)′C′]	+	[B′(AC′)	+	B(AC′)′]	=	A′BC	+	(A	+
B′)C′	+	AB′C′	+	B(A′	+	C)	=	B(A′C	+	A′	+	C)	+	C′(A	+	B′	+	AB′)	=	B(A′	+	C)	+	C′(A	+	B′)	When	manipulating	an	expression	that	contains	several	exclusive-OR	or	equivalence	operations,	it	is	useful	to	note	that	(XY′	+	X′Y)′	=	XY	+	X′Y′	(3-19)	For	example,	A′	⊕	B	⊕	C	=	=	=	=	[A′B′	+	(A′)′B]	⊕	C	(A′B′	+	AB)C′	+	(A′B′	+	AB′)C	(A′B′	+	AB)C′	+	(A′B	+	AB′)C
A′B′C′	+	ABC′	+	A′BC	+	AB′C	(by	(3-6))	(by	(3-19))	3.3	The	Consensus	Theorem	The	consensus	theorem	is	very	useful	in	simplifying	Boolean	expressions.	Given	an	expression	of	the	form	XY	+	X′Z	+	YZ,	the	term	YZ	is	redundant	and	can	be	eliminated	to	form	the	equivalent	expression	XY	+	X′Z.	The	term	that	was	eliminated	is	referred	to	as	the
consensus	term.	Given	a	pair	of	terms	for	which	a	variable	appears	in	one	term	and	the	complement	of	that	variable	in	another,	the	consensus	term	is	formed	by	multiplying	the	two	original	terms	together,	leaving	out	the	selected	variable	and	its	complement.	For	example,	the	consensus	of	ab	and	a′c	is	bc;	the	consensus	of	abd	and	b′de′	is	(ad)(de′)	=
ade′.	The	consensus	of	terms	ab′d	and	a′bd′	is	0.	The	consensus	theorem,	given	in	Equation	(2-18),	is	XY	+	X′Z	+	YZ	=	XY	+	X′Z	(3-20)	Boolean	Algebra	(Continued)	71	The	consensus	theorem	can	be	used	to	eliminate	redundant	terms	from	Boolean	expressions.	For	example,	in	the	following	expression,	b′c	is	the	consensus	of	a′b′	and	ac,	and	ab	is	the
consensus	of	ac	and	bc′,	so	both	consensus	terms	can	be	eliminated:	a′b′	+	ac	+	bc′	+	b′c	+	ab	=	a′b′	+	ac	+	bc′	The	brackets	indicate	how	the	consensus	terms	are	formed.	The	dual	form	of	the	consensus	theorem,	given	in	Equation	(2-18D),	is	(X	+	Y)(X′	+	Z)(Y	+	Z)	=	(X	+	Y)(X′	+	Z)	(3-21)	Note	again	that	the	key	to	recognizing	the	consensus	term	is
to	first	find	a	pair	of	terms,	one	of	which	contains	a	variable	and	the	other	its	complement.	In	this	case,	the	consensus	is	formed	by	adding	this	pair	of	terms	together	leaving	out	the	selected	variable	and	its	complement.	In	the	following	expression,	(a	+	b	+	d′)	is	a	consensus	term	and	can	be	eliminated	by	using	the	dual	consensus	theorem:	↓	(a	+	b	+
c′)(a	+	b	+	d′)(b	+	c	+	d′)	=	(a	+	b	+	c′)(b	+	c	+	d′)	The	final	result	obtained	by	application	of	the	consensus	theorem	may	depend	on	the	order	in	which	terms	are	eliminated.	Example	A′C′D	+	A′BD	+	BCD	+	ABC	+	ACD′	(3-22)	First,	we	eliminate	BCD	as	shown.	(Why	can	it	be	eliminated?)	Now	that	BCD	has	been	eliminated,	it	is	no	longer	there,	and	it
cannot	be	used	to	eliminate	another	term.	Checking	all	pairs	of	terms	shows	that	no	additional	terms	can	be	eliminated	by	the	consensus	theorem.	Now	we	start	over	again:	A′C′D	+	A′BD	+	BCD	+	ABC	+	ACD′	(3-23)	This	time,	we	do	not	eliminate	BCD;	instead	we	eliminate	two	other	terms	by	the	consensus	theorem.	After	doing	this,	observe	that	BCD
can	no	longer	be	eliminated.	Note	that	the	expression	reduces	to	four	terms	if	BCD	is	eliminated	first,	but	that	it	can	be	reduced	to	three	terms	if	BCD	is	not	eliminated.	Sometimes	it	is	impossible	to	directly	reduce	an	expression	to	a	minimum	number	of	terms	by	simply	eliminating	terms.	It	may	be	necessary	to	first	add	a	term	using	the	consensus
theorem	and	then	use	the	added	term	to	eliminate	other	terms.	For	example,	consider	the	expression	F	=	ABCD	+	B′CDE	+	A′B′	+	BCE′	If	we	compare	every	pair	of	terms	to	see	if	a	consensus	term	can	be	formed,	we	find	that	the	only	consensus	terms	are	ACDE	(from	ABCD	and	B′CDE)	and	A′CE′	72	Unit	3	(from	A′B′	and	BCE′).	Because	neither	of
these	consensus	terms	appears	in	the	original	expression,	we	cannot	directly	eliminate	any	terms	using	the	consensus	theorem.	However,	if	we	first	add	the	consensus	term	ACDE	to	F,	we	get	F	=	ABCD	+	B′CDE	+	A′B′	+	BCE′	+	ACDE	Then,	we	can	eliminate	ABCD	and	B′CDE	using	the	consensus	theorem,	and	F	reduces	to	F	=	A′B′	+	BCE′	+	ACDE
The	term	ACDE	is	no	longer	redundant	and	cannot	be	eliminated	from	the	final	expression.	3.4	Algebraic	Simplification	of	Switching	Expressions	In	this	section	we	review	and	summarize	methods	for	simplifying	switching	expressions,	using	the	laws	and	theorems	of	Boolean	algebra.	This	is	important	because	simplifying	an	expression	reduces	the
cost	of	realizing	the	expression	using	gates.	Later,	we	will	learn	graphical	methods	for	simplifying	switching	functions,	but	we	will	learn	algebraic	methods	first.	In	addition	to	multiplying	out	and	factoring,	three	basic	ways	of	simplifying	switching	functions	are	combining	terms,	eliminating	terms,	and	eliminating	literals.	1.	Combining	terms.	Use	the
theorem	XY	+	XY′	=	X	to	combine	two	terms.	For	example,	abc′d′	+	abcd′	=	abd′	[X	=	abd′,	Y	=	c]	(3-24)	When	combining	terms	by	this	theorem,	the	two	terms	to	be	combined	should	contain	exactly	the	same	variables,	and	exactly	one	of	the	variables	should	appear	complemented	in	one	term	and	not	in	the	other.	Because	X	+	X	=	X,	a	given	term	may
be	duplicated	and	combined	with	two	or	more	other	terms.	For	example,	ab′c	+	abc	+	a′bc	=	ab′c	+	abc	+	abc	+	a′bc	=	ac	+	bc	The	theorem	still	can	be	used,	of	course,	when	X	and	Y	are	replaced	with	more	complicated	expressions.	For	example,	(a	+	bc)(d	+	e′)	+	a′(b′	+	c′)(d	+	e′)	=	d	+	e′	[X	=	d	+	e′,	Y	=	a	+	bc,	Y′	=	a′(b′	+	c′)]	Boolean	Algebra
(Continued)	2.	Eliminating	terms.	Use	the	theorem	X	+	XY	=	X	to	eliminate	redundant	terms	if	possible;	then	try	to	apply	the	consensus	theorem	(XY	+	X′Z	+	YZ	=	XY	+	X′Z)	to	eliminate	any	consensus	terms.	For	example,	a′b	+	a′bc	=	a′b	a′bc′	+	bcd	+	a′bd	=	a′bc′	+	bcd	3.	Example	73	[X	=	a′b]	[X	=	c,	Y	=	bd,	Z	=	a′b]	(3-25)	Eliminating	literals.	Use
the	theorem	X	+	X′Y	=	X	+	Y	to	eliminate	redundant	literals.	Simple	factoring	may	be	necessary	before	the	theorem	is	applied.	A′B	+	A′B′C′D′	+	ABCD′	=	=	=	=	=	A′(B	+	B′C′D′)	+	ABCD′	A′(B	+	C′D′)	+	ABCD′	B(A′	+	ACD′)	+	A′C′D′	B(A′	+	CD′)	+	A′C′D′	A′B	+	BCD′	+	A′C′D′	(3-26)	The	expression	obtained	after	applying	steps	1,	2,	and	3	will	not
necessarily	have	a	minimum	number	of	terms	or	a	minimum	number	of	literals.	If	it	does	not	and	no	further	simplification	can	be	made	using	steps	1,	2,	and	3,	the	deliberate	introduction	of	redundant	terms	may	be	necessary	before	further	simplification	can	be	made.	4.	Adding	redundant	terms.	Redundant	terms	can	be	introduced	in	several	ways

such	as	adding	xx′,	multiplying	by	(x	+	x′),	adding	yz	to	xy	+	x′z,	or	adding	xy	to	x.	When	possible,	the	added	terms	should	be	chosen	so	that	they	will	combine	with	or	eliminate	other	terms.	Example	WX	+	XY	+	X′Z′	+	WY′Z′	=	WX	+	XY	+	X′Z′	+	WY′Z′	+	WZ′	=	WX	+	XY	+	X′Z′	+	WZ′	=	WX	+	XY	+	X′Z′	(add	WZ′	by	consensus	theorem)	(eliminate	WY′Z′)
(eliminate	WZ′)	(3-27)	The	following	comprehensive	example	illustrates	the	use	of	all	four	methods:	Example	A′B′C′D′	+	A′BC′D′	+	A′BD	+	A′BC′D	+	ABCD	+	ACD′	+	B′CD′	➀	A′C′D′	➁	=	A′C′D′	+	BD(A′	+	AC)	+	ACD′	+	B′CD′	➂	=	A′C′D′	+	A′BD	+	BCD	+	ACD′	+	B′CD′	+	ABC	➃	74	Unit	3	consensus	ACD′	=	A′C′D′	+	A′BD	+	BCD	+	ACD′	+	B′CD′	+	ABC
consensus	BCD	=	A′C′D′	+	A′BD	+	B′CD′	+	ABC	(3-28)	What	theorems	were	used	in	steps	1,	2,	3,	and	4?	If	the	simplified	expression	is	to	be	left	in	a	product-of-sums	form	instead	of	a	sum-of-products	form,	the	duals	of	the	preceding	theorems	should	be	applied.	(A′	+	B′	+	C′)(A′	+	B′	+	C)(B′	+	C)(A	+	C)(A	+	B	+	C)	➁	➀	(A′	+	B′)	=	(A′	+	B′)(B′	+	C)(A	+
C)	=	(A′	+	B′)(A	+	C)	Example	➂	(3-29)	What	theorems	were	used	in	steps	1,	2,	and	3?	In	general,	there	is	no	easy	way	of	determining	when	a	Boolean	expression	has	a	minimum	number	of	terms	or	a	minimum	number	of	literals.	Systematic	methods	for	finding	minimum	sum-of-products	and	minimum	product-of-sums	expressions	will	be	discussed	in
Units	5	and	6.	3.5	Proving	Validity	of	an	Equation	Often	we	will	need	to	determine	if	an	equation	is	valid	for	all	combinations	of	values	of	the	variables.	Several	methods	can	be	used	to	determine	if	an	equation	is	valid:	1.	2.	3.	4.	Construct	a	truth	table	and	evaluate	both	sides	of	the	equation	for	all	combinations	of	values	of	the	variables.	(This	method
is	rather	tedious	if	the	number	of	variables	is	large,	and	it	certainly	is	not	very	elegant.)	Manipulate	one	side	of	the	equation	by	applying	various	theorems	until	it	is	identical	with	the	other	side.	Reduce	both	sides	of	the	equation	independently	to	the	same	expression.	It	is	permissible	to	perform	the	same	operation	on	both	sides	of	the	equation
provided	that	the	operation	is	reversible.	For	example,	it	is	all	right	to	complement	both	sides	of	the	equation,	but	it	is	not	permissible	to	multiply	both	sides	of	the	equation	by	the	same	expression.	(Multiplication	is	not	reversible	because	division	is	not	defined	for	Boolean	algebra.)	Similarly,	it	is	not	permissible	to	add	the	same	term	to	both	sides	of
the	equation	because	subtraction	is	not	defined	for	Boolean	algebra.	Boolean	Algebra	(Continued)	75	To	prove	that	an	equation	is	not	valid,	it	is	sufficient	to	show	one	combination	of	values	of	the	variables	for	which	the	two	sides	of	the	equation	have	different	values.	When	using	method	2	or	3	above	to	prove	that	an	equation	is	valid,	a	useful
strategy	is	to	1.	2.	3.	4.	First	reduce	both	sides	to	a	sum	of	products	(or	a	product	of	sums).	Compare	the	two	sides	of	the	equation	to	see	how	they	differ.	Then	try	to	add	terms	to	one	side	of	the	equation	that	are	present	on	the	other	side.	Finally	try	to	eliminate	terms	from	one	side	that	are	not	present	on	the	other.	Whatever	method	is	used,
frequently	compare	both	sides	of	the	equation	and	let	the	difference	between	them	serve	as	a	guide	for	what	steps	to	take	next.	Example	1	Show	that	A′BD′	+	BCD	+	ABC′	+	AB′D	=	BC′D′	+	AD	+	A′BC	Starting	with	the	left	side,	we	first	add	consensus	terms,	then	combine	terms,	and	finally	eliminate	terms	by	the	consensus	theorem.	A′BD′	+	BCD	+
ABC′	+	AB′D	=	A′BD′	+	BCD	+	ABC′	+	AB′D	+	BC′D	+	A′BC	+	ABD	(add	consensus	of	A′BD′	and	ABC′)	(add	consensus	of	A′BD′	and	BCD)	(add	consensus	of	BCD	and	ABC′)	=	AD	+	A′BD′	+	BCD	+	ABC′	+	BC′D′	+	A′BC	=	BC′D′	+	AD	+	A′BC	(eliminate	consensus	of	BC′D′	and	AD)	(eliminate	consensus	of	AD	and	A′BC)	(eliminate	consensus	of	BC′D′	and
A′BC)	(3-30)	Example	2	Show	that	the	following	equation	is	valid:	A′BC′D	+	(A′	+	BC)(A	+	C′D′)	+	BC′D	+	A′BC′	=	ABCD	+	A′C′D′	+	ABD	+	ABCD′	+	BC′D	First,	we	will	reduce	the	left	side:	A′BC′D	+	(A′	+	BC)(A	+	C′D′)	+	BC′D	+	A′BC′	(eliminate	A′BC′D	using	absorption)	=	(A′	+	BC)(A	+	C′D′)	+	BC′D	+	A′BC′	(multiply	out	using	(3-3))	=	ABC	+	A′C′D′	+
BC′D	+	A′BC′	(eliminate	A′BC′	by	consensus)	=	ABC	+	A′C′D′	+	BC′D	76	Unit	3	Now	we	will	reduce	the	right	side:	=	ABCD	+	A′C′D′	+	ABD	+	ABCD′	+	BC′D	(combine	ABCD	and	ABCD′)	=	ABC	+	A′C′D′	+	ABD	+	BC′D	(eliminate	ABD	by	consensus)	=	ABC	+	A′C′D′	+	BC′D	Because	both	sides	of	the	original	equation	were	independently	reduced	to	the
same	expression,	the	original	equation	is	valid.	As	we	have	previously	observed,	some	of	the	theorems	of	Boolean	algebra	are	not	true	for	ordinary	algebra.	Similarly,	some	of	the	theorems	of	ordinary	algebra	are	not	true	for	Boolean	algebra.	Consider,	for	example,	the	cancellation	law	for	ordinary	algebra:	If	x	+	y	=	x	+	z,	then	y=z	(3-31)	The
cancellation	law	is	not	true	for	Boolean	algebra.	We	will	demonstrate	this	by	constructing	a	counterexample	in	which	x	+	y	=	x	+	z	but	y	=	z.	Let	x	=	1,	y	=	0,	z	=	1.	Then,	1	+	0	=	1	+	1	but	0	≠	1	In	ordinary	algebra,	the	cancellation	law	for	multiplication	is	If	xy	=	xz,	then	y=z	(3-32)	This	law	is	valid	provided	x	≠	0.	In	Boolean	algebra,	the	cancellation
law	for	multiplication	is	also	not	valid	when	x	=	0.	(Let	x	=	0,	y	=	0,	z	=	1;	then	0	·	0	=	0	·	1,	but	0	≠	1).	Because	x	=	0	about	half	of	the	time	in	switching	algebra,	the	cancellation	law	for	multiplication	cannot	be	used.	Even	though	Statements	(3-31)	and	(3-32)	are	generally	false	for	Boolean	algebra,	the	converses	If	y	=	z,	If	y	=	z,	then	then	x+y=x+z
xy	=	xz	(3-33)	(3-34)	are	true.	Thus,	we	see	that	although	adding	the	same	term	to	both	sides	of	a	Boolean	equation	leads	to	a	valid	equation,	the	reverse	operation	of	canceling	or	subtracting	a	term	from	both	sides	generally	does	not	lead	to	a	valid	equation.	Similarly,	multiplying	both	sides	of	a	Boolean	equation	by	the	same	term	leads	to	a	valid
equation,	but	not	conversely.	When	we	are	attempting	to	prove	that	an	equation	is	valid,	it	is	not	permissible	to	add	the	same	expression	to	both	sides	of	the	equation	or	to	multiply	both	sides	by	the	same	expression,	because	these	operations	are	not	reversible.	Boolean	Algebra	(Continued)	77	Programmed	Exercise	3.1	Cover	the	answers	to	this
exercise	with	a	sheet	of	paper	and	slide	it	down	as	you	check	your	answers.	Write	your	answer	in	the	space	provided	before	looking	at	the	correct	answer.	The	following	expression	is	to	be	multiplied	out	to	form	a	sum	of	products:	(A	+	B	+	C′)(A′	+	B′	+	D)(A′	+	C	+	D′)(A	+	C′	+	D)	First,	find	a	pair	of	sum	terms	which	have	two	literals	in	common	and
apply	the	second	distributive	law.	Also,	apply	the	same	law	to	the	other	pair	of	terms.	Answer	(A	+	C′	+	BD)	[A′	+	(B′	+	D)(C	+	D′)]	(Note:	This	answer	was	obtained	by	using	(X	+	Y)(X	+	Z)	=	X	+	YZ.)	Next,	find	a	pair	of	sum	terms	which	have	a	variable	in	one	and	its	complement	in	the	other.	Use	the	appropriate	theorem	to	multiply	these	sum	terms
together	without	introducing	any	redundant	terms.	Apply	the	same	theorem	a	second	time.	Answer	(A	+	C′	+	BD)(A′	+	B′D′	+	CD)	=	A(B′D′	+	CD)	+	A′(C′	+	BD)	or	A(B′	+	D)(C	+	D′)	+	A′(C′	+	BD)	=	A(B′D′	+	CD)	+	A′(C′	+	BD)	(Note:	This	answer	was	obtained	using	(X	+	Y)(X′	+	Z)	=	XZ	+	X′Y.)	Complete	the	problem	by	multiplying	out	using	the
ordinary	distributive	law.	Final	Answer	AB′D′	+	ACD	+	A′C′	+	A′BD	Programmed	Exercise	3.2	Cover	the	answers	to	this	exercise	with	a	sheet	of	paper	and	slide	it	down	as	you	check	your	answers.	Write	your	answer	in	the	space	provided	before	looking	at	the	correct	answer.	The	following	expression	is	to	be	factored	to	form	a	product	of	sums:	WXY′	+
W′X′Z	+	WY′Z	+	W′YZ′	First,	factor	as	far	as	you	can	using	the	ordinary	distributive	law.	78	Unit	3	Answer	WY′(X	+	Z)	+	W′(X′Z	+	YZ′)	Next,	factor	further	by	using	a	theorem	which	involves	a	variable	and	its	complement.	Apply	this	theorem	twice.	(W	+	X′Z	+	YZ′)	[W′	+	Y′(X	+	Z)]	=	[W	+	(X′	+	Z′)(Y	+	Z)][W′	+	Y′(X	+	Z)]	Answer	or	WY′(X	+	Z)	+	W′
(X′	+	Z′)(Y	+	Z)	=	[W	+	(X′	+	Z′)(Y	+	Z)][W′	+	Y′(X	+	Z)]	[Note:	This	answer	was	obtained	by	using	AB	+	A′C	=	(A	+	C)(A′	+	B).]	Now,	complete	the	factoring	by	using	the	second	distributive	law.	Final	answer	(W	+	X′	+	Z′)(W	+	Y	+	Z)(W′	+	Y′)(W′	+	X	+	Z)	Programmed	Exercise	3.3	Cover	the	answers	to	this	exercise	with	a	sheet	of	paper	and	slide	it
down	as	you	check	your	answers.	Write	your	answer	in	the	space	provided	before	looking	at	the	correct	answer.	The	following	expression	is	to	be	simplified	using	the	consensus	theorem:	AC′	+	AB′D	+	A′B′C	+	A′CD′	+	B′C′D′	First,	find	all	of	the	consensus	terms	by	checking	all	pairs	of	terms.	Answer	The	consensus	terms	are	indicated.	A′B′D′	AC′	+
AB′D	+	A′B′C	+	A′CD′	+	B′C′D′	B′CD	AB′C′	A′B′D′	Boolean	Algebra	(Continued)	79	Can	the	original	expression	be	simplified	by	the	direct	application	of	the	consensus	theorem?	Answer	No,	because	none	of	the	consensus	terms	appears	in	the	original	expression.	Now	add	the	consensus	term	B′CD	to	the	original	expression.	Compare	the	added	term	with
each	of	the	original	terms	to	see	if	any	consensus	exists.	Eliminate	as	many	of	the	original	terms	as	you	can.	Answer	(AB′D)	AC′	+	AB′D	+	A′B′C	+	A′CD′	+	B′C′D′	+	B′CD	(A′B′C)	Now	that	we	have	eliminated	two	terms,	can	B′CD	also	be	eliminated?	What	is	the	final	reduced	expression?	Answer	No,	because	the	terms	used	to	form	B′CD	are	gone.	Final
answer	is	AC′	+	A′CD′	+	B′C′D′	+	B′CD	Programmed	Exercise	3.4	Keep	the	answers	to	this	exercise	covered	with	a	sheet	of	paper	and	slide	it	down	as	you	check	your	answers.	Problem:	The	following	expression	is	to	be	simplified	ab′cd′e	+	acd	+	acf′gh′	+	abcd′e	+	acde′	+	e′h′	State	a	theorem	which	can	be	used	to	combine	a	pair	of	terms	and	apply	it
to	combine	two	of	the	terms	in	the	above	expression.	Answer	Apply	XY	+	XY′	=	X	to	the	terms	ab′cd′e	and	abcd′e,	which	reduces	the	expression	to	acd′e	+	acd	+	acf	′gh′	+	acde′	+	e′h′	80	Unit	3	Now	state	a	theorem	(other	than	the	consensus	theorem)	which	can	be	used	to	eliminate	terms	and	apply	it	to	eliminate	a	term	in	this	expression.	Answer
Apply	X	+	XY	=	X	to	eliminate	acde′.	(What	term	corresponds	toX?)	The	result	is	acd′e	+	acd	+	acf′gh′	+	e′h′	Now	state	a	theorem	that	can	be	used	to	eliminate	literals	and	apply	it	to	eliminate	a	literal	from	one	of	the	terms	in	this	expression.	(Hint:	It	may	be	necessary	to	factor	out	some	common	variables	from	a	pair	of	terms	before	the	theorem	can
be	applied.)	Answer	Use	X	+	X′Y	=	X	+	Y	to	eliminate	a	literal	from	acd′e.	To	do	this,	first	factor	ac	out	of	the	first	two	terms:	acd′e	+	acd	=	ac(d	+	d′e).	After	eliminating	d′,	the	resulting	expression	is	ace	+	acd	+	acf′gh′	+	e′h′	(a)	Can	any	term	be	eliminated	from	this	expression	by	the	direct	application	of	the	consensus	theorem?	(b)	If	not,	add	a
redundant	term	using	the	consensus	theorem,	and	use	this	redundant	term	to	eliminate	one	of	the	other	terms.	(c)	Finally,	reduce	your	expression	to	three	terms.	Answer	(a)	No	(b)	Add	the	consensus	of	ace	and	e′h′:	ace	+	acd	+	acf′gh′	+	e′h′	+	ach′	Now	eliminate	acf′gh′	(by	X	+	XY	=	X)	ace	+	acd	+	e′h′	+	ach′	(c)	Now	eliminate	ach′	by	the	consensus
theorem.	The	final	answer	is	ace	+	acd	+	e′h′	Boolean	Algebra	(Continued)	81	Programmed	Exercise	3.5	Keep	the	answers	to	this	exercise	covered	with	a	sheet	of	paper	and	slide	it	down	as	you	check	your	answers.	Z	=	(A	+	C′	+	F	′	+	G)(A	+	C′	+	F	+	G)(A	+	B	+	C′	+	D′	+	G)	(A	+	C	+	E	+	G)(A′	+	B	+	G)(B	+	C′	+	F	+	G)	This	is	to	be	simplified	to	the
form	(X	+	X	+	X)(X	+	X	+	X)(X	+	X	+	X)	where	each	X	represents	a	literal.	State	a	theorem	which	can	be	used	to	combine	the	first	two	sum	terms	of	Z	and	apply	it.	(Hint:	The	two	sum	terms	differ	in	only	one	variable.)	Answer	(X	+	Y)(X	+	Y′)	=	X	Z	=	(A	+	C′	+	G)(A	+	B	+	C′	+	D′	+	G)(A	+	C	+	E	+	G)(A′	+	B	+	G)	(B	+	C′	+	F	+	G)	Now	state	a	theorem
(other	than	the	consensus	theorem)	which	can	be	used	to	eliminate	a	sum	term	and	apply	it	to	this	expression.	Answer	X(X	+	Y)	=	X	Z	=	(A	+	C′	+	G)(A	+	C	+	E	+	G)(A′	+	B	+	G)(B	+	C′	+	F	+	G)	Next,	eliminate	one	literal	from	the	second	term,	leaving	the	expression	otherwise	unchanged.	(Hint:	This	cannot	be	done	by	the	direct	application	of	one
theorem;	it	will	be	necessary	to	partially	multiply	out	the	first	two	sum	terms	before	eliminating	the	literal.)	Answer	(A	+	C′	+	G)(A	+	C	+	E	+	G)	=	A	+	G	+	C′(C	+	E)	=	A	+	G	+	C′E	Therefore,	Z	=	(A	+	C′	+	G)(A	+	E	+	G)(A′	+	B	+	G)(B	+	C′	+	F	+	G)	82	Unit	3	(a)	Can	any	term	be	eliminated	from	this	expression	by	the	direct	application	of	the
consensus	theorem?	(b)	If	not,	add	a	redundant	sum	term	using	the	consensus	theorem,	and	use	this	redundant	term	to	eliminate	one	of	the	other	terms.	(c)	Finally,	reduce	your	expression	to	a	product	of	three	sum	terms.	Answer	(a)	No	(b)	Add	B	+	C′	+	G	(consensus	of	A	+	C′	+	G	and	A′	+	B	+	G).	Use	X(X	+	Y)	=	X,	where	X	=	B	+	C′	+	G,	to	eliminate
B	+	C′	+	F	+	G.	(c)	Now	eliminate	B	+	C′	+	G	by	consensus.	The	final	answer	is	Z	=	(A	+	C′	+	G)(A	+	E	+	G)(A′	+	B	+	G)	Problems	3.6	In	each	case,	multiply	out	to	obtain	a	sum	of	products:	(Simplify	where	possible.)	(a)	(W	+	X′	+	Z′)(W′	+	Y′)(W′	+	X	+	Z′)(W	+	X′)(W	+	Y	+	Z)	(b)	(A	+	B	+	C	+	D)(A′	+	B′	+	C	+	D′)(A′	+	C)(A	+	D)(B	+	C	+	D)	3.7	Factor
to	obtain	a	product	of	sums.	(Simplify	where	possible.)	(a)	BCD	+	C′D′	+	B′C′D	+	CD	(b)	A′C′D′	+	ABD′	+	A′CD	+	B′D	3.8	Write	an	expression	for	F	and	simplify.	A	B	⊕	F	A	D	3.9	D	+	Is	the	following	distributive	law	valid?	A	⊕	BC	=	(A	⊕	B)(A	⊕	C)	Prove	your	answer.	3.10	(a)	Reduce	to	a	minimum	sum	of	products	(three	terms):	(X	+	W)(Y	⊕	Z)	+	XW′	(b)
Reduce	to	a	minimum	sum	of	products	(four	terms):	(A	⊕	BC)	+	BD	+	ACD	(c)	Reduce	to	a	minimum	product	of	sums	(three	terms):	(A′	+	C′	+	D′)(A′	+	B	+	C′)(A	+	B	+	D)(A	+	C	+	D)	Boolean	Algebra	(Continued)	83	3.11	Simplify	algebraically	to	a	minimum	sum	of	products	(five	terms):	(A	+	B′	+	C	+	E′)(A	+	B′	+	D′	+	E)(B′	+	C′	+	D′	+	E′)	3.12	Prove
algebraically	that	the	following	equation	is	valid:	A′CD′E	+	A′B′D′	+	ABCE	+	ABD	=	A′B′D′	+	ABD	+	BCD′E	3.13	Simplify	each	of	the	following	expressions:	(a)	KLMN′	+	K′L′MN	+	MN′	(b)	KL′M′	+	MN′	+	LM′N′	(c)	(K	+	L′)(K′	+	L′	+	N)(L′	+	M	+	N′)	(d)	(K′	+	L	+	M′	+	N)(K′	+	M′	+	N	+	R)(K′	+	M′	+	N	+	R′)KM	3.14	Factor	to	obtain	a	product	of	sums:	(a)
K′L′M	+	KM′N	+	KLM	+	LM′N′	(b)	KL	+	K′L′	+	L′M′N′	+	LMN′	(c)	KL	+	K′L′M	+	L′M′N	+	LM′N′	(d)	K′M′N	+	KL′N′	+	K′MN′	+	LN	(e)	WXY	+	WX′Y	+	WYZ	+	XYZ′	(four	terms)	(four	terms)	(four	terms)	(four	terms)	(three	terms)	3.15	Multiply	out	to	obtain	a	sum	of	products:	(a)	(K′	+	M′	+	N)(K′	+	M)(L	+	M′	+	N′)(K′	+	L	+	M)(M	+	N)	(three	terms)	(b)	(K′
+	L′	+	M′)(K	+	M	+	N′)(K	+	L)(K′	+	N)(K′	+	M	+	N)	(c)	(K′	+	L′	+	M)(K	+	N′)(K′	+	L	+	N′)(K	+	L)(K	+	M	+	N′)	(d)	(K	+	L	+	M)(K′	+	L′	+	N′)(K′	+	L′	+	M′)(K	+	L	+	N)	(e)	(K	+	L	+	M)(K	+	M	+	N)(K′	+	L′	+	M′)(K′	+	M′	+	N′)	3.16	Eliminate	the	exclusive	OR,	and	then	factor	to	obtain	a	minimum	product	of	sums:	(a)	(KL	⊕	M)	+	M′N′	(b)	M′(K	⊕	N′)	+	MN	+
K′N	3.17	Algebraically	prove	identities	involving	the	equivalence	(exclusive-NOR)	operation:	(a)	x	≡	0	=	x′	(b)	x	≡	1	=	x	(c)	x	≡	x	=	1	(d)	x	≡	x′	=	0	(e)	x	≡	y	=	y	≡	x	(f)	(x	≡	y)	≡	z	=	x	≡	(y	≡	z)	(g)	(x	≡	y)′	=	x′	≡	y	=	x	≡	y′	3.18	Algebraically	prove	identities	involving	the	exclusive-OR	operation:	(a)	x	⊕	0	=	x	(b)	x	⊕	1	=	x′	(c)	x	⊕	x	=	0	(d)	x	⊕	x′	=	1	(e)	x
⊕	y	=	y	⊕	x	(f)	(x	⊕	y)	⊕	z	=	x	⊕	(y	⊕	z)	(g)	(x	⊕	y)′	=	x′	⊕	y	=	x	⊕	y′	84	Unit	3	3.19	Algebraically	prove	the	following	identities:	(a)	x	+	y	=	x	⊕	y	⊕	xy	(b)	x	+	y	=	x	≡	y	≡	xy	3.20	Algebraically	prove	or	disprove	the	following	distributive	identities:	(a)	x(y	⊕	z)	=	xy	⊕	xz	(b)	x	+	(y	⊕	z)	=	(x	+	y)	⊕	(x	+	z)	(c)	x(y	≡	z)	=	xy	≡	xz	(d)	x	+	(y	≡	z)	=	(x	+	y)	≡	(x
+	z)	3.21	Simplify	each	of	the	following	expressions	using	only	the	consensus	theorem	(or	its	dual):	(a)	BC′D′	+	ABC′	+	AC′D	+	AB′D	+	A′BD′	(reduce	to	three	terms)	(b)	W′Y′	+	WYZ	+	XY′Z	+	WX′Y	(reduce	to	three	terms)	(c)	(B	+	C	+	D)(A	+	B	+	C)(A′	+	C	+	D)(B′	+	C′	+	D′)	(d)	W′XY	+	WXZ	+	WY′Z	+	W′Z′	(e)	A′BC′	+	BC′D′	+	A′CD	+	B′CD	+	A′BD	(f)	(A
+	B	+	C)(B	+	C′	+	D)(A	+	B	+	D)(A′	+	B′	+	D′)	3.22	Factor	Z	=	ABC	+	DE	+	ACF	+	AD′	+	AB′E′	and	simplify	it	to	the	form	(X	+	X)	(X	+	X)(X	+	X	+	X	+	X)	(where	each	X	represents	a	literal).	Now	express	Z	as	a	minimum	sum	of	products	in	the	form:	XX	+	XX	+	XX	+	XX	3.23	Repeat	Problem	3.22	for	F	=	A′B	+	AC	+	BC′D′	+	BEF	+	BDF.	3.24	Factor	to
obtain	a	product	of	four	terms	and	then	reduce	to	three	terms	by	applying	the	consensus	theorem:	X′Y′Z′	+	XYZ	3.25	Simplify	each	of	the	following	expressions:	(a)	xy	+	x′yz′	+	yz	(b)	(xy′	+	z)(x	+	y′)z	(c)	xy′	+	z	+	(x′	+	y)z′	(d)	a′d(b′	+	c)	+	a′d′(b	+	c′)	+	(b′	+	c)(b	+	c′)	(e)	w′x′	+	x′y′	+	yz	+	w′z′	(f)	A′BCD	+	A′BC′D	+	B′EF	+	CDE′G	+	A′DEF	+	A′B′EF
(reduce	to	a	sum	of	three	terms)	(g)	[(a′	+	d′	+	b′c)(b	+	d	+	ac′)]	′	+	b′c′d′	+	a′c′d	(reduce	to	three	terms)	3.26	Simplify	to	a	sum	of	three	terms:	(a)	A′C′D′	+	AC′	+	BCD	+	A′CD′	+	A′BC	+	AB′C′	(b)	A′B′C′	+	ABD	+	A′C	+	A′CD′	+	AC′D	+	AB′C′	3.27	Reduce	to	a	minimum	sum	of	products:	F	=	WXY′	+	(W′Y′	≡	X)	+	(Y	⊕	WZ)	Boolean	Algebra	(Continued)	85
3.28	Determine	which	of	the	following	equations	are	always	valid	(give	an	algebraic	proof):	(a)	a′b	+	b′c	+	c′a	=	ab′	+	bc′	+	ca′	(b)	(a	+	b)(b	+	c)(c	+	a)	=	(a′	+	b′)(b′	+	c′)(c′	+	a′)	(c)	abc	+	ab′c′	+	b′cd	+	bc′d	+	ad	=	abc	+	ab′c′	+	b′cd	+	bc′d	(d)	xy′	+	x′z	+	yz′	=	x′y	+	xz′	+	y′z	(e)	(x	+	y)(y	+	z)(x	+	z)	=	(x′	+	y′)(y′	+	z′)(x′	+	z′)	(f)	abc′	+	ab′c	+	b′c′d	+	bcd	=
ab′c	+	abc′	+	ad	+	bcd	+	b′c′d	3.29	The	following	circuit	is	implemented	using	two	half-adder	circuits.	The	expressions	for	the	half-adder	outputs	are	S	=	A	⊕	B,	and	C	=	AB.	Derive	simplified	sum-ofproducts	expressions	for	the	circuit	outputs	SUM	and	Co.	Give	the	truth	table	for	the	outputs.	X	A	S	A	S	Y	B	C	B	C	SUM	Co	Ci	3.30	The	output	of	a
majority	circuit	is	1	if	a	majority	(more	than	half)	of	its	inputs	are	equal	to	1,	and	the	output	is	0	otherwise.	Construct	a	truth	table	for	a	three-input	majority	circuit	and	derive	a	simplified	sum-of-products	expression	for	its	output.	3.31	Prove	algebraically:	(a)	(X′	+	Y′)(X	≡	Z)	+	(X	+	Y)(X	⊕	Z)	=	(X	⊕	Y)	+	Z′	(b)	(W′	+	X	+	Y′)(W	+	X′	+	Y)(W	+	Y′	+	Z)	=
X′Y′	+	WX	+	XYZ	+	W′YZ	(c)	ABC	+	A′C′D′	+	A′BD′	+	ACD	=	(A′	+	C)(A	+	D′)(B	+	C′	+	D)	3.32	Which	of	the	following	statements	are	always	true?	Justify	your	answers.	(a)	If	A	+	B	=	C,	then	AD′	+	BD′	=	CD′	(b)	If	A′B	+	A′C	=	A′D,	then	B	+	C	=	D	(c)	If	A	+	B	=	C,	then	A	+	B	+	D	=	C	+	D	(d)	If	A	+	B	+	C	=	C	+	D,	then	A	+	B	=	D	3.33	Find	all	possible
terms	that	could	be	added	to	each	expression	using	the	consensus	theorem.	Then	reduce	to	a	minimum	sum	of	products.	(a)	A′C′	+	BC	+	AB′	+	A′BD	+	B′C′D′	+	ACD′	(b)	A′C′D′	+	BC′D	+	AB′C′	+	A′BC	3.34	Simplify	the	following	expression	to	a	sum	of	two	terms	and	then	factor	the	result	to	obtain	a	product	of	sums:	abd′f′	+	b′cegh′	+	abd′f	+	acd′e	+
b′ce	3.35	Multiply	out	the	following	expression	and	simplify	to	obtain	a	sum-of-products	expression	with	three	terms:	(a	+	c)(b′	+	d)(a	+	c′	+	d′)(b′	+	c′	+	d′)	86	Unit	3	3.36	Factor	and	simplify	to	obtain	a	product-of-sums	expression	with	four	terms:	abc′	+	d′e	+	ace	+	b′c′d′	3.37	(a)	Show	that	x	⊕	y	=	(x	≡	y)′	(b)	Realize	a′b′c′	+	a′bc	+	ab′c	+	abc′	using
only	two-input	equivalence	gates.	3.38	In	a	Boolean	algebra,	which	of	the	following	statements	are	true?	Prove	your	answer.	(a)	If	x(y	+	a′)	=	x(y	+	b′),	then	a	=	b.	(b)	If	a′b	+	ab′	=	a′c	+	ac′,	then	b	=	c.	3.39	The	definition	of	Boolean	algebra	given	in	Unit	2	is	redundant	(i.e.,	not	all	of	the	properties	are	independent).	For	example,	show	that	the
associative	property	a	+	(b	+	c)	=	(a	+	b)	+	c	can	be	proved	using	the	other	properties	of	Boolean	algebra.	(Hint:	Consider	expanding	[a	+	(b	+	c)][(a	+	b)	+	c]	in	two	different	ways.	Be	sure	to	not	use	the	associative	property.)	UNIT	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	4	Objectives	1.	Given	a	word	description	of	the
desired	behavior	of	a	logic	circuit,	write	the	output	of	the	circuit	as	a	function	of	the	input	variables.	Specify	this	function	as	an	algebraic	expression	or	by	means	of	a	truth	table,	as	is	appropriate.	2.	Given	a	truth	table,	write	the	function	(or	its	complement)	as	both	a	minterm	expansion	(standard	sum	of	products)	and	a	maxterm	expansion	(standard
product	of	sums).	Be	able	to	use	both	alphabetic	and	decimal	notation.	3.	Given	an	algebraic	expression	for	a	function,	expand	it	algebraically	to	obtain	the	minterm	or	maxterm	form.	4.	Given	one	of	the	following:	minterm	expansion	for	F,	minterm	expansion	for	F′,	maxterm	expansion	for	F,	or	maxterm	expansion	for	F′,	find	any	of	the	other	three
forms.	5.	Write	the	general	form	of	the	minterm	and	maxterm	expansion	of	a	function	of	n	variables.	6.	Explain	why	some	functions	contain	don’t-care	terms.	7.	Explain	the	operation	of	a	full	adder	and	a	full	subtracter	and	derive	logic	equations	for	these	modules.	Draw	a	block	diagram	for	a	parallel	adder	or	subtracter	and	trace	signals	on	the	block
diagram.	87	88	Unit	4	Study	Guide	In	the	previous	units,	we	placed	a	dot	(·)	inside	the	AND-gate	symbol,	a	plus	sign	(+)	inside	the	OR-gate	symbol,	and	a	⊕	inside	the	exclusive	OR.	Because	you	are	now	familiar	with	the	relationship	between	the	shape	of	the	gate	symbol	and	the	logic	function	performed,	we	will	omit	the	·	,	+	,	and	⊕	and	use	the
standard	gate	symbols	for	AND,	OR,	and	exclusive	OR	in	the	rest	of	the	book.	1.	Study	Section	4.1,	Conversion	of	English	Sentences	to	Boolean	Equations.	(a)	Use	braces	to	identify	the	phrases	in	each	of	the	following	sentences:	(1)	The	tape	reader	should	stop	if	the	manual	stop	button	is	pressed,	if	an	error	occurs,	or	if	an	end-of-tape	signal	is
present.	(2)	He	eats	eggs	for	breakfast	if	it	is	not	Sunday	and	he	has	eggs	in	the	refrigerator.	(3)	Addition	should	occur	iff	an	add	instruction	is	given	and	the	signs	are	the	same,	or	if	a	subtract	instruction	is	given	and	the	signs	are	not	the	same.	(b)	Write	a	Boolean	expression	which	represents	each	of	the	sentences	in	(a).	Assign	a	variable	to	each
phrase,	and	use	a	complemented	variable	to	represent	a	phrase	which	contains	“not”.	(Your	answers	should	be	in	the	form	F	=	S′E,	F	=	AB	+	SB′,	and	F	=	A	+	B	+	C,	but	not	necessarily	in	that	order.)	(c)	If	X	represents	the	phrase	“N	is	greater	than	3”,	how	can	you	represent	the	phrase	“N	is	less	than	or	equal	to	3”?	(d)	Work	Problems	4.1	and	4.2.	2.
Study	Section	4.2,	Combinational	Logic	Design	Using	a	Truth	Table.	Previously,	you	have	learned	how	to	go	from	an	algebraic	expression	for	a	function	to	a	truth	table;	in	this	section	you	will	learn	how	to	go	from	a	truth	table	to	an	algebraic	expression.	(a)	Write	a	product	term	which	is	1	iff	a	=	0,	b	=	0,	and	c	=	1.	(b)	Write	a	sum	term	which	is	0	iff	a
=	0,	b	=	0,	and	c	=	1.	(c)	Verify	that	your	answers	to	(a)	and	(b)	are	complements.	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	89	(d)	Write	a	product	term	which	is	1	iff	a	=	1,	b	=	0,	c	=	0,	and	d	=	1.	(e)	Write	a	sum	term	which	is	0	iff	a	=	0,	b	=	0,	c	=	1,	and	d	=	1.	(f)	For	the	given	truth	table,	write	F	as	a	sum	of	four
product	terms	which	correspond	to	the	four	1’s	of	F.	(g)	From	the	truth	table	write	F	as	a	product	of	four	sum	terms	which	correspond	to	the	four	0’s	of	F.	(h)	Verify	that	your	answers	to	both	(f)	and	(g)	reduce	to	F	=	b′c′	+	a′c.	3.	a	0	0	0	0	1	1	1	1	b	0	0	1	1	0	0	1	1	c	0	1	0	1	0	1	0	1	F	1	1	0	1	1	0	0	0	Study	Section	4.3,	Minterm	and	Maxterm	Expansions.
(a)	Define	the	following	terms:	minterm	(for	n	variables)	maxterm	(for	n	variables)	(b)	Study	Table	4-1	and	observe	the	relation	between	the	values	of	A,	B,	and	C	and	the	corresponding	minterms	and	maxterms.	If	A	=	0,	then	does	A	or	A′	appear	in	the	minterm?	In	the	maxterm?	If	A	=	1,	then	does	A	or	A′	appear	in	the	minterm?	In	the	maxterm?	What
is	the	relation	between	minterm,	mi,	and	the	corresponding	maxterm,	Mi?	(c)	For	the	table	given	in	Study	Guide	Question	2(f),	write	the	minterm	expansion	for	F	in	m-notation	and	in	decimal	notation.	For	the	same	table,	write	the	maxterm	expansion	for	F	in	M-notation	and	in	decimal	notation.	Check	your	answers	by	converting	your	answer	to	2(f)
to	m-notation	and	your	answer	to	2(g)	to	M-notation.	90	Unit	4	(d)	Given	a	sum-of-products	expression,	how	do	you	expand	it	to	a	standard	sum	of	products	(minterm	expansion)?	(e)	Given	a	product-of-sums	expression,	how	do	you	expand	it	to	a	standard	product	of	sums	(maxterm	expansion)?	(f)	In	Equation	(4-11),	what	theorems	were	used	to	factor
f	to	obtain	the	maxterm	expansion?	(g)	Why	is	the	following	expression	not	a	maxterm	expansion?	f(A,	B,	C,	D)	=	(A	+	B′	+	C	+	D)(A′	+	B	+	C′)(A′	+	B	+	C	+	D′)	(h)	Assuming	that	there	are	three	variables	(A,	B,	C),	identify	each	of	the	following	as	a	minterm	expansion,	maxterm	expansion,	or	neither:	(1)	AB	+	B′C′	(3)	A	+	B	+	C	(5)	A′BC′	+	AB′C	+	ABC
4.	(2)	(A′	+	B	+	C′)(A	+	B′	+	C)	(4)	(A′	+	B)(B′	+	C)(A′	+	C)	(6)	AB′C′	Note	that	it	is	possible	for	a	minterm	or	maxterm	expansion	to	have	only	one	term.	(a)	Given	a	minterm	in	terms	of	its	variables,	the	procedure	for	conversion	to	decimal	notation	is	(1)	Replace	each	complemented	variable	with	a	_____	and	replace	each	uncomplemented	variable	with
a	_____.	(2)	Convert	the	resulting	binary	number	to	decimal.	(b)	Convert	the	minterm	AB′C′DE	to	decimal	notation.	(c)	Given	that	m13	is	a	minterm	of	the	variables	A,	B,	C,	D,	and	E,	write	the	minterm	in	terms	of	these	variables.	(d)	Given	a	maxterm	in	terms	of	its	variables,	the	procedure	for	conversion	to	decimal	notation	is	(1)	Replace	each
complemented	variable	with	a	_____	and	replace	each	uncomplemented	variable	with	a	_____.	(2)	Group	these	0’s	and	1’s	to	form	a	binary	number	and	convert	to	decimal.	(e)	Convert	the	maxterm	A′	+	B	+	C	+	D′	+	E′	to	decimal	notation.	(f)	Given	that	M13	is	a	maxterm	of	the	variables	A,	B,	C,	D,	and	E,	write	the	maxterm	in	terms	of	these	variables.
(g)	Check	your	answers	to	(b),	(c),	(e),	and	(f)	by	using	the	relation	Mi	=	mi′.	(h)	Given	f(a,	b,	c,	d,	e)	=	Π	M(0,	10,	28),	express	f	in	terms	of	a,	b,	c,	d,	and	e.	(Your	answer	should	contain	only	five	complemented	variables.)	91	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	5.	Study	Section	4.4,	General	Minterm	and	Maxterm
Expansions.	Make	sure	that	you	understand	the	notation	here	and	can	follow	the	algebra	in	all	of	the	equations.	If	you	have	difficulty	with	this	section,	ask	for	help	before	you	take	the	readiness	test.	(a)	How	many	different	switching	functions	of	four	variables	are	possible?	n	(b)	Explain	why	there	are	22	switching	functions	of	n	variables.	(c)	Write	the
function	of	Figure	4-1	in	the	form	of	Equation	(4-13)	and	show	that	it	reduces	to	Equation	(4-3).	(d)	For	Equation	(4-19),	write	out	the	indicated	summations	in	full	for	the	case	n	=	2.	(e)	Study	Tables	4-3	and	4-4	carefully	and	make	sure	you	understand	why	each	table	entry	is	valid.	Use	the	truth	table	for	f	and	f′	(Figure	4-1)	to	verify	the	entries	in
Table	4-4.	If	you	understand	the	relationship	between	Table	4-3	and	the	truth	table	for	f	and	f′,	you	should	be	able	to	perform	the	conversions	without	having	to	memorize	the	table.	(f)	Given	that	f	(A,	B,	C)	=	Σm	(0,	1,	3,	4,	7)	The	maxterm	expansion	for	f	is	____________________________________	The	minterm	expansion	for	f′	is
____________________________________	The	maxterm	expansion	for	f′	is	____________________________________	(g)	Work	Problems	4.3	and	4.4.	6.	Study	Section	4.5,	Incompletely	Specified	Functions.	(a)	State	two	reasons	why	some	functions	have	don’t-care	terms.	(b)	Given	the	following	table,	write	the	minterm	expansion	for	Z	in	decimal	form.	(c)	Write	the
maxterm	expansion	in	decimal	form.	(d)	Work	Problems	4.5	and	4.6.	A	0	0	0	0	1	1	1	1	B	0	0	1	1	0	0	1	1	C	0	1	0	1	0	1	0	1	Z	1	X	0	X	X	1	0	0	92	Unit	4	7.	Study	Section	4.6,	Examples	of	Truth	Table	Construction.	Finding	the	truth	table	from	the	problem	statement	is	probably	the	most	difficult	part	of	the	process	of	designing	a	switching	circuit.	Make	sure
that	you	understand	how	to	do	this.	8.	Work	Problems	4.7	through	4.10.	9.	Study	Section	4.7,	Design	of	Binary	Adders.	(a)	For	the	given	parallel	adder,	show	the	0’s	and	1’s	at	the	full	adder	(FA)	inputs	and	outputs	when	the	following	unsigned	numbers	are	added:	11	+	14	=	25.	Verify	that	the	result	is	correct	if	C4S3S2S1S0	is	taken	as	a	5-bit	sum.	If
the	sum	is	limited	to	4	bits,	explain	why	this	is	an	overflow	condition.	S3	C4	FA	S2	FA	S1	FA	S0	FA	C0	(b)	Review	Section	1.4,	Representation	of	Negative	Numbers.	If	we	use	the	2’s	complement	number	system	to	add	(−5)	+	(−2),	verify	that	the	FA	inputs	and	outputs	are	exactly	the	same	as	in	part	(a).	However,	for	2’s	complement,	the	interpretation
of	the	results	is	quite	different.	After	discarding	C4,	verify	that	the	resultant	4-bit	sum	is	correct,	and	therefore	no	overflow	has	occurred.	(c)	If	we	use	the	1’s	complement	number	system	to	add	(−5)	+	(−2),	show	the	FA	inputs	and	outputs	on	the	diagram	below	before	the	end-around	carry	is	added	in.	Assume	that	C0	is	initially	0.	Then	add	the	end-
around	carry	(C4)	to	the	rightmost	FA,	add	the	new	carry	(C1)	into	the	next	cell,	and	continue	until	no	further	changes	occur.	Verify	that	the	resulting	sum	is	the	correct	1’s	complement	representation	of	−7.	C4	10.	(a)	FA	FA	FA	FA	C0	Work	the	following	subtraction	example.	As	you	subtract	each	column,	place	a	1	over	the	next	column	if	you	have	to
borrow,	otherwise	place	a	0.	For	each	column,	as	you	compute	xi	−	yi	−	bi,	fill	in	the	corresponding	values	of	bi+1	and	di	in	the	truth	table.	If	you	have	done	this	correctly,	the	resulting	table	should	match	the	full	subtracter	truth	table	(Table	4-6).	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	←	borrows	←X	←Y	←	difference
11000110	−0	1	0	1	1	0	1	0	xi	0	0	0	0	1	1	1	1	yi	0	0	1	1	0	0	1	1	bi	0	1	0	1	0	1	0	1	93	bi+1	di	(b)	Work	Problems	4.11	and	4.12.	11.	Read	the	following	and	then	work	Problem	4.13	or	4.14	as	assigned:	When	looking	at	an	expression	to	determine	the	required	number	of	gates,	keep	in	mind	that	the	number	of	required	gates	is	generally	not	equal	to	the
number	of	AND	and	OR	operations	which	appear	in	the	expression.	For	example,	AB	+	CD	+	EF(G	+	H)	contains	four	AND	operations	and	three	OR	operations,	but	it	only	requires	three	AND	gates	and	two	OR	gates:	A	B	C	D	G	E	F	H	12.	Reread	the	objectives	of	this	unit.	Make	sure	that	you	understand	the	difference	in	the	procedures	for	converting
maxterms	and	minterms	from	decimal	to	algebraic	notation.	When	you	are	satisfied	that	you	can	meet	the	objectives,	take	the	readiness	test.	When	you	come	to	take	the	readiness	test,	turn	in	a	copy	of	your	solution	to	assigned	simulation	exercise.	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	In	this	unit	you	will	learn	how	to
design	a	combinational	logic	circuit	starting	with	a	word	description	of	the	desired	circuit	behavior.	The	first	step	is	usually	to	translate	the	word	description	into	a	truth	table	or	into	an	algebraic	expression.	Given	the	truth	table	for	a	Boolean	function,	two	standard	algebraic	forms	of	the	function	can	be	derived—the	standard	sum	of	products
(minterm	expansion)	and	the	standard	product	of	sums	(maxterm	expansion).	Simplification	of	either	of	these	standard	forms	leads	directly	to	a	realization	of	the	circuit	using	AND	and	OR	gates.	4.1	Conversion	of	English	Sentences	to	Boolean	Equations	The	three	main	steps	in	designing	a	single-output	combinational	switching	circuit	are	1.	2.	3.	Find
a	switching	function	that	specifies	the	desired	behavior	of	the	circuit.	Find	a	simplified	algebraic	expression	for	the	function.	Realize	the	simplified	function	using	available	logic	elements.	For	simple	problems,	it	may	be	possible	to	go	directly	from	a	word	description	of	the	desired	behavior	of	the	circuit	to	an	algebraic	expression	for	the	output
function.	In	other	cases,	it	is	better	to	first	specify	the	function	by	means	of	a	truth	table	and	then	derive	an	algebraic	expression	from	the	truth	table.	Logic	design	problems	are	often	stated	in	terms	of	one	or	more	English	sentences.	The	first	step	in	designing	a	logic	circuit	is	to	translate	these	sentences	into	Boolean	equations.	In	order	to	do	this,	we
must	break	down	each	sentence	into	phrases	and	associate	a	Boolean	variable	with	each	phrase.	If	a	phrase	can	have	a	value	of	true	or	false,	then	we	can	represent	that	phrase	by	a	Boolean	variable.	Phrases	such	as	“she	goes	to	the	store”	or	“today	is	Monday”	can	be	either	true	or	false,	but	a	command	like	“go	to	the	store”	has	no	truth	value.	If	a
sentence	has	several	phrases,	we	will	mark	each	phrase	with	a	brace.	The	following	sentence	has	three	phrases:	Mary	watches	TV	if	it	is	Monday	night	and	she	has	finished	her	homework.	94	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	95	The	“if”	and	“and”	are	not	included	in	any	phrase;	they	show	the	relationships	among	the
phrases.	We	will	define	a	two-valued	variable	to	indicate	the	truth	or	falsity	of	each	phrase:	F	=	1	if	“Mary	watches	TV”	is	true;	otherwise,	F	=	0.	A	=	1	if	“it	is	Monday	night”	is	true;	otherwise,	A	=	0.	B	=	1	if	“she	has	finished	her	homework”	is	true;	otherwise	B	=	0.	Because	F	is	“true”	if	A	and	B	are	both	“true”,	we	can	represent	the	sentence	by	F	=
A·B	The	following	example	illustrates	how	to	go	from	a	word	statement	of	a	problem	directly	to	an	algebraic	expression	which	represents	the	desired	circuit	behavior.	An	alarm	circuit	is	to	be	designed	which	operates	as	follows:	The	alarm	will	ring	iff	the	alarm	switch	is	turned	on	and	the	door	is	not	closed,	or	it	is	after	6	p.m.	and	the	window	is	not
closed.	The	first	step	in	writing	an	algebraic	expression	which	corresponds	to	the	above	sentence	is	to	associate	a	Boolean	variable	with	each	phrase	in	the	sentence.	This	variable	will	have	a	value	of	1	when	the	phrase	is	true	and	0	when	it	is	false.	We	will	use	the	following	assignment	of	variables:	The	alarm	will	ring	iff	the	alarm	switch	is	on	Z	and	A
the	door	is	not	closed	or	it	is	after	6	P.M.	B′	the	window	is	not	closed.	and	C	D′	This	assignment	implies	that	if	Z	=	1,	the	alarm	will	ring.	If	the	alarm	switch	is	turned	on,	A	=	1,	and	if	it	is	after	6	p.m.,	C	=	1.	If	we	use	the	variable	B	to	represent	the	phrase	“the	door	is	closed”,	then	B′	represents	“the	door	is	not	closed”.	Thus,	B	=	1	if	the	door	is	closed,
and	B′	=	1(B	=	0)	if	the	door	is	not	closed.	Similarly,	D	=	1	if	the	window	is	closed,	and	D′	=	1	if	the	window	is	not	closed.	Using	this	assignment	of	variables,	the	above	sentence	can	be	translated	into	the	following	Boolean	equation:	Z	=	AB′	+	CD′	This	equation	corresponds	to	the	following	circuit:	A	B	Z	C	D	In	this	circuit,	A	is	a	signal	which	is	1	when
the	alarm	switch	is	on,	C	is	a	signal	from	a	time	clock	which	is	1	when	it	is	after	6	p.m.,	B	is	a	signal	from	a	switch	on	the	door	96	Unit	4	which	is	1	when	the	door	is	closed,	and	similarly	D	is	1	when	the	window	is	closed.	The	output	Z	is	connected	to	the	alarm	so	that	it	will	ring	when	Z	=	1.	4.2	Combinational	Logic	Design	Using	a	Truth	Table	The
next	example	illustrates	logic	design	using	a	truth	table.	A	switching	circuit	has	three	inputs	and	one	output,	as	shown	in	Figure	4-1(a).	The	inputs	A,	B,	and	C	represent	the	first,	second,	and	third	bits,	respectively,	of	a	binary	number	N.	The	output	of	the	circuit	is	to	be	f	=	1	if	N	≥	0112	and	f	=	0	if	N	<	0112.	The	truth	table	for	f	is	shown	in	Figure	4-
1(b).	FIGURE	4-1	Combinational	Circuit	with	Truth	Table	©	Cengage	Learning	2014	A	f	B	C	(a)	A	B	C	f	f′	0	0	0	0	1	1	1	1	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	1	1	0	0	1	1	0	1	0	1	0	1	0	1	(b)	Next,	we	will	derive	an	algebraic	expression	for	f	from	the	truth	table	by	using	the	combinations	of	values	of	A,	B,	and	C	for	which	f	=	1.	The	term	A′BC	is	1	only	if	A	=
0,	B	=	1,	and	C	=	1.	Similarly,	the	term	AB′C′	is	1	only	for	the	combination	100,	AB′C	is	1	only	for	101,	ABC′	is	1	only	for	110,	and	ABC	is	1	only	for	111.	ORing	these	terms	together	yields	f	=	A′BC	+	AB′C′	+	AB′C	+	ABC′	+	ABC	(4-1)	This	expression	equals	1	if	A,	B,	and	C	take	on	any	of	the	five	combinations	of	values	011,	100,	101,	110,	or	111.	If	any
other	combination	of	values	occurs,	f	is	0	because	all	five	terms	are	0.	Equation	(4-1)	can	be	simplified	by	first	combining	terms	using	the	uniting	theorem	and	then	eliminating	A′	using	the	elimination	theorem:	f	=	A′BC	+	AB′	+	AB	=	A′BC	+	A	=	A	+	BC	Equation	(4-2)	leads	directly	to	the	following	circuit:	B	C	A	f	(4-2)	Applications	of	Boolean	Algebra
Minterm	and	Maxterm	Expansions	97	Instead	of	writing	f	in	terms	of	the	1’s	of	the	function,	we	may	also	write	f	in	terms	of	the	0’s	of	the	function.	The	function	defined	by	Figure	4-1	is	0	for	three	combinations	of	input	values.	Observe	that	the	term	A	+	B	+	C	is	0	only	if	A	=	B	=	C	=	0.	Similarly,	A	+	B	+	C′	is	0	only	for	the	input	combination	001,	and
A	+	B′	+	C	is	0	only	for	the	combination	010.	ANDing	these	terms	together	yields	f	=	(A	+	B	+	C)(A	+	B	+	C′)(A	+	B′	+	C)	(4-3)	This	expression	equals	0	if	A,	B,	and	C	take	on	any	of	the	combinations	of	values	000,	001,	or	010.	For	any	other	combination	of	values,	f	is	1	because	all	three	terms	are	l.	Because	Equation	(4-3)	represents	the	same	function
as	Equation	(4-1)	they	must	both	reduce	to	the	same	expression.	Combining	terms	and	using	the	second	distributive	law,	Equation	(4-3)	simplifies	to	f	=	(A	+	B)(A	+	B′	+	C)	=	A	+	B(B′	+	C)	=	A	+	BC	(4-4)	which	is	the	same	as	Equation	(4-2).	Another	way	to	derive	Equation	(4-3)	is	to	first	write	f′	as	a	sum	of	products,	and	then	complement	the	result.
From	Figure	4-1,	f′is	1	for	input	combinations	ABC	=	000,	001,	and	010,	so	f′	=	A′B′C′	+	A′B′C	+	A′BC′	Taking	the	complement	of	f′	yields	Equation	(4-3).	4.3	Minterm	and	Maxterm	Expansions	Each	of	the	terms	in	Equation	(4-1)	is	referred	to	as	a	minterm.	In	general,	a	minterm	of	n	variables	is	a	product	of	n	literals	in	which	each	variable	appears
exactly	once	in	either	true	or	complemented	form,	but	not	both.	(A	literal	is	a	variable	or	its	complement.)	Table	4-1	lists	all	of	the	minterms	of	the	three	variables	A,	B,	and	C.	Each	minterm	has	a	value	of	1	for	exactly	one	combination	of	values	of	the	variables	A,	B,	and	C.	Thus	if	A	=	B	=	C	=	0,	A′B′C′	=	1;	if	A	=	B	=	0	and	C	=	1,	A′B′C	=	1;	and	so
forth.	Minterms	are	often	written	in	abbreviated	form—A′B′C′	is	designated	m0,	A′B′C	is	designated	m1,	etc.	In	general,	the	minterm	which	corresponds	to	row	i	of	the	truth	table	is	designated	mi	(i	is	usually	written	in	decimal).	TABLE	4-1	Minterms	and	Maxterms	for	Three	Variables	©	Cengage	Learning	2014	Row	No.	0	1	2	3	4	5	6	7	A	0	0	0	0	1	1	1	1
B	0	0	1	1	0	0	1	1	C	0	1	0	1	0	1	0	1	Minterms	A′B′C′	=	m0	A′B′C	=	m1	A′BC′	=	m2	A′BC	=	m3	AB′C′	=	m4	AB′C	=	m5	ABC′	=	m6	ABC	=	m7	Maxterms	A	+	B	+	C	=	M0	A	+	B	+	C′	=	M1	A	+	B′	+	C	=	M2	A	+	B′	+	C′	=	M3	A′	+	B	+	C	=	M4	A′	+	B	+	C′	=	M5	A′	+	B′	+	C	=	M6	A′	+	B′	+	C′	=	M7	98	Unit	4	When	a	function	f	is	written	as	a	sum	of	minterms	as
in	Equation	(4-1),	this	is	referred	to	as	a	minterm	expansion	or	a	standard	sum	of	products.1	If	f	=	1	for	row	i	of	the	truth	table,	then	mi	must	be	present	in	the	minterm	expansion	because	mi	=	1	only	for	the	combination	of	values	of	the	variables	corresponding	to	row	i	of	the	table.	Because	the	minterms	present	in	f	are	in	one-to-one	correspondence
with	the	1’s	of	f	in	the	truth	table,	the	minterm	expansion	for	a	function	f	is	unique.	Equation	(4-1)	can	be	rewritten	in	terms	of	m-notation	as	f(A,	B,	C)	=	m3	+	m4	+	m5	+	m6	+	m7	(4-5)	This	can	be	further	abbreviated	by	listing	only	the	decimal	subscripts	in	the	form	f(A,	B,	C)	=	Σ	m(3,	4,	5,	6,	7)	(4-5a)	Each	of	the	sum	terms	(or	factors)	in	Equation
(4-3)	is	referred	to	as	a	maxterm.	In	general,	a	maxterm	of	n	variables	is	a	sum	of	n	literals	in	which	each	variable	appears	exactly	once	in	either	true	or	complemented	form,	but	not	both.	Table	4-1	lists	all	of	the	maxterms	of	the	three	variables	A,	B,	and	C.	Each	maxterm	has	a	value	of	0	for	exactly	one	combination	of	values	for	A,	B,	and	C.	Thus,	if	A
=	B	=	C	=	0,	A	+	B	+	C	=	0;	if	A	=	B	=	0	and	C	=	1,	A	+	B	+	C′	=	0;	and	so	forth.	Maxterms	are	often	written	in	abbreviated	form	using	M-notation.	The	maxterm	which	corresponds	to	row	i	of	the	truth	table	is	designated	Mi.	Note	that	each	maxterm	is	the	complement	of	the	corresponding	minterm,	that	is,	Mi	=	m′.i	When	a	function	f	is	written	as	a
product	of	maxterms,	as	in	Equation	(4-3),	this	is	referred	to	as	a	maxterm	expansion	or	standard	product	of	sums.	If	f	=	0	for	row	i	of	the	truth	table,	then	Mi	must	be	present	in	the	maxterm	expansion	because	Mi	=	0	only	for	the	combination	of	values	of	the	variables	corresponding	to	row	i	of	the	table.	Note	that	the	maxterms	are	multiplied	together
so	that	if	any	one	of	them	is	0,	f	will	be	0.	Because	the	maxterms	are	in	one-to-one	correspondence	with	the	0’s	of	f	in	the	truth	table,	the	maxterm	expansion	for	a	function	f	is	unique.	Equation	(4-3)	can	be	rewritten	in	M-notation	as	f(A,	B,	C)	=	M0	M1M2	(4-6)	This	can	be	further	abbreviated	by	listing	only	the	decimal	subscripts	in	the	form	f(A,	B,	C)
=	Π	M(0,	1,	2)	(4-6a)	where	Π	means	a	product.	Because	if	f	≠	1	then	f	=	0,	it	follows	that	if	mi	is	not	present	in	the	minterm	expansion	of	f	,	then	Mi	is	present	in	the	maxterm	expansion.	Thus,	given	a	minterm	expansion	of	an	n-variable	function	f	in	decimal	notation,	the	maxterm	expansion	is	obtained	by	listing	those	decimal	integers	(0	≤	i	≤	2n	−	1)
not	in	the	minterm	list.	Using	this	method,	Equation	(4-6a)	can	be	obtained	directly	from	Equation	(4-5a).	1	Other	names	used	in	the	literature	for	standard	sum	of	products	are	canonical	sum	of	products	and	disjunctive	normal	form.	Similarly,	a	standard	product	of	sums	may	be	called	a	canonical	product	of	sums	or	a	conjunctive	normal	form.
Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	99	Given	the	minterm	or	maxterm	expansions	for	f	,	the	minterm	or	maxterm	expansions	for	the	complement	of	f	are	easy	to	obtain.	Because	f′	is	1	when	f	is	0,	the	minterm	expansion	for	f′	contains	those	minterms	not	present	in	f	.	Thus,	from	Equation	(4-5),	f′	=	m0	+	m1	+	m2	=	Σ
m(0,	1,	2)	(4-7)	Similarly,	the	maxterm	expansion	for	f′	contains	those	maxterms	not	present	in	f	.	From	Equation	(4-6),	f′	=	Π	M(3,	4,	5,	6,	7)	=	M3M4M5M6M7	(4-8)	Because	the	complement	of	a	minterm	is	the	corresponding	maxterm,	Equation	(4-8)	can	be	obtained	by	complementing	Equation	(4-5):	f′	=	(m3	+	m4	+	m5	+	m6	+	m7)′	=	m′3	m4′	m′5
m′6	m′7	=	M3M4M5M6M7	Similarly,	Equation	(4-7)	can	be	obtained	by	complementing	Equation	(4-6):	f′	=	(M0M1M2)′	=	M0′	+	M1′	+	M2′	=	m0	+	m1	+	m2	A	general	switching	expression	can	be	converted	to	a	minterm	or	maxterm	expansion	either	using	a	truth	table	or	algebraically.	If	a	truth	table	is	constructed	by	evaluating	the	expression	for	all
different	combinations	of	the	values	of	the	variables,	the	minterm	and	maxterm	expansions	can	be	obtained	from	the	truth	table	by	the	methods	just	discussed.	Another	way	to	obtain	the	minterm	expansion	is	to	first	write	the	expression	as	a	sum	of	products	and	then	introduce	the	missing	variables	in	each	term	by	applying	the	theorem	X	+	X′	=	1.
Example	Find	the	minterm	expansion	of	f(a,	b,	c,	d)	=	a′(b′	+	d)	+	acd′.	f	=	a′b′	+	a′d	+	acd′	=	a′b′(c	+	c′)(d	+	d′)	+	a′d(b	+	b′)(c	+	c′)	+	acd′(b	+	b′)	=	a′b′c′d′	+	a′b′c′d	+	a′b′cd′	+	a′b′cd	+	a′b′c′d	+	a′b′cd	+	a′bc′d	+	a′bcd	+	abcd′	+	ab′cd′	(4-9)	Duplicate	terms	have	been	crossed	out,	because	X	+	X	=	X.	This	expression	can	then	be	converted	to	decimal
notation:	f	=	a′b′c′d′	+	a′b′c′d	+	a′b′cd′	+	a′b′cd	+	a′bc′d	+	a′bcd	+	abcd′	+	ab′cd′	0	0	0	0	0	0	0	1	0	0	10	0	0	11	0	10	1	0	111	1	1	1	0	10	10	f	=	Σ	m(0,	1,	2,	3,	5,	7,	10,	14)	(4-10)	The	maxterm	expansion	for	f	can	then	be	obtained	by	listing	the	decimal	integers	(in	the	range	0	to	15)	which	do	not	correspond	to	minterms	of	f	:	f	=	Π	M(4,	6,	8,	9,	11,	12,	13,
15)	100	Unit	4	An	alternate	way	of	finding	the	maxterm	expansion	is	to	factor	f	to	obtain	a	product	of	sums,	introduce	the	missing	variables	in	each	sum	term	by	using	XX′	=	0,	and	then	factor	again	to	obtain	the	maxterms.	For	Equation	(4-9),	f	=	=	=	=	a′(b′	+	d)	+	acd′	(a′	+	cd′)(a	+	b′	+	d)	=	(a′	+	c)(a′	+	d′)(a	+	b′	+	d)	(a′	+	bb′	+	c	+	dd′)(a′	+	bb′	+	cc′
+	d′)(a	+	b′	+	cc′	+	d)	(a′	+	bb′	+	c	+	d)(a′	+	bb′	+	c	+	d′)(a′	+	bb′	+	c	+	d′)	(a′	+	bb′	+	c′	+	d′)(a	+	b′	+	cc′	+	d)	=	(a′	+	b	+	c	+	d)(a′	+	b′	+	c	+	d)(a′	+	b	+	c	+	d′)(a′	+	b′	+	c	+	d′)	1000	1100	1001	1101	(a′	+	b	+	c′	+	d′)(a′	+	b′	+	c′	+	d′)(a	+	b′	+	c	+	d)(a	+	b′	+	c′	+	d)	1011	1111	0100	0110	=	Π	M(4,	6,	8,	9,	11,	12,	13,	15)	(4-11)	Note	that	when
translating	the	maxterms	to	decimal	notation,	a	primed	variable	is	first	replaced	with	a	1	and	an	unprimed	variable	with	a	0.	Because	the	terms	in	the	minterm	expansion	of	a	function	F	correspond	one-toone	with	the	rows	of	the	truth	table	for	which	F	=	1,	the	minterm	expansion	of	F	is	unique.	Thus,	we	can	prove	that	an	equation	is	valid	by	finding
the	minterm	expansion	of	each	side	and	showing	that	these	expansions	are	the	same.	Example	Show	that	a′c	+	b′c′	+	ab	=	a′b′	+	bc	+	ac′.	We	will	find	the	minterm	expansion	of	each	side	by	supplying	the	missing	variables.	For	the	left	side,	a′c(b	+	b′)	+	b′c′(a	+	a′)	+	ab(c	+	c′)	=	a′bc	+	a′b′c	+	ab′c′	+	a′b′c′	+	abc	+	abc′	=	m3	+	m1	+	m4	+	m0	+	m7	+
m6	For	the	right	side,	a′b′(c	+	c′)	+	bc(a	+	a′)	+	ac′(b	+	b′)	=	a′b′c	+	a′b′c	+	abc	+	a′bc	+	abc′	+	ab′c′	=	m1	+	m0	+	m7	+	m3	+	m6	+	m4	Because	the	two	minterm	expansions	are	the	same,	the	equation	is	valid.	4.4	General	Minterm	and	Maxterm	Expansions	Table	4-2	represents	a	truth	table	for	a	general	function	of	three	variables.	Each	ai	is	a
constant	with	a	value	of	0	or	1.	To	completely	specify	a	function,	we	must	assign	values	to	all	of	the	ai’s.	Because	each	ai	can	be	specified	in	two	ways,	there	are	28	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	TABLE	4-2	General	Truth	Table	for	Three	Variables	©	Cengage	Learning	2014	A	0	0	0	0	1	1	1	1	B	0	0	1	1	0	0	1	1	C	0	1	0
1	0	1	0	1	101	F	a0	a1	a2	a3	a4	a5	a6	a7	ways	of	filling	the	F	column	of	the	truth	table;	therefore,	there	are	256	different	functions	of	three	variables	(this	includes	the	degenerate	cases,	F	identically	equal	to	0	and	F	identically	equal	to	1).	For	a	function	of	n	variables,	there	are	2n	rows	in	the	n	truth	table,	and	because	the	value	of	F	can	be	0	or	1	for
each	row,	there	are	22	possible	functions	of	n	variables.	From	Table	4-2,	we	can	write	the	minterm	expansion	for	a	general	function	of	three	variables	as	follows:	7	F	=	a0m0	+	a1m1	+	a2m2	+	·	·	·	+	a7m7	=	a	aimi	(4-12)	i=0	Note	that	if	ai	=	1,	minterm	mi	is	present	in	the	expansion;	if	ai	=	0,	the	corresponding	minterm	is	not	present.	The	maxterm
expansion	for	a	general	function	of	three	variables	is	7	F	=	(a0	+	M0)(a1	+	M1)(a2	+	M2)	·	·	·	(a7	+	M7)	=	q	(ai	+	Mi)	(4-13)	i=0	Note	that	if	ai	=	1,	ai	+	Mi	=	1,	and	Mi	drops	out	of	the	expansion;	however,	Mi	is	present	if	ai	=	0.	From	Equation	(4-13),	the	minterm	expansion	of	F′	is	7	7	7	′	F′	=	c	q	(ai	+	Mi)	d	=	a	ai′Mi′	=	a	ai′mi	i=0	i=0	(4-14)	i=0	Note
that	all	minterms	which	are	not	present	in	F	are	present	in	F′.	From	Equation	(4-12),	the	maxterm	expansion	of	F′	is	7	7	7	′	F′	=	c	a	aimi	d	=	q	(ai′	+	mi′)	=	q	(ai′	+	Mi)	i=0	i=0	(4-15)	i=0	Note	that	all	maxterms	which	are	not	present	in	F	are	present	in	F′.	Generalizing	Equations	(4-12),	(4-13),	(4-14),	and	(4-15)	to	n	variables,	we	have	2n	−1	2n	−1	i=0
i=0	F	=	a	aimi	=	q	(ai	+	Mi)	(4-16)	102	Unit	4	2n	−1	2n	−1	F′	=	a	ai′	mi	=	q	(ai′	+	Mi)	(4-17)	i=0	i=0	Given	two	different	minterms	of	n	variables,	mi	and	mj,	at	least	one	variable	appears	complemented	in	one	of	the	minterms	and	uncomplemented	in	the	other.	Therefore,	if	i	≠	j,	mi	mj	=	0.	For	example,	for	n	=	3,	m1m3	=	(A′B′C)(A′BC)	=	0.	Given
minterm	expansions	for	two	functions	2n	−1	2n	−1	f1	=	a	ai	mi	f2	=	a	bj	mj	i=0	j=0	(4-18)	the	product	is	2n	−1	2n	−1	2n	−1	2n	−1	i=0	j=0	i=0	j=0	f1	f2	=	a	a	ai	mi	b	a	a	bj	mj	b	=	a	a	ai	bj	mi	mj	2	−1	n	=	a	ai	bi	mi	(because	mi	mj	=	0	unless	i	=	j)	(4-19)	i=0	Note	that	all	of	the	cross-product	terms	(i	≠	j)	drop	out	so	that	f1	f2	contains	only	those
minterms	which	are	present	in	both	f1	and	f2.	For	example,	if	f1	=	Σ	m(0,	2,	3,	5,	9,	11)	and	f2	=	Σ	m(0,	3,	9,	11,	13,	14)	f1	f2	=	Σ	m(0,	3,	9,	11)	Table	4-3	summarizes	the	procedures	for	conversion	between	minterm	and	maxterm	expansions	of	F	and	F′,	assuming	that	all	expansions	are	written	as	lists	of	decimal	numbers.	When	using	this	table,	keep
in	mind	that	the	truth	table	for	an	n-variable	function	has	2n	rows	so	that	the	minterm	(or	maxterm)	numbers	range	from	0	to	2n	−	1.	Table	4-4	illustrates	the	application	of	Table	4-3	to	the	threevariable	function	given	in	Figure	4-1.	TABLE	4-3	Conversion	of	Forms	Minterm	Expansion	of	F	GIVEN	FORM	©	Cengage	Learning	2014	DESIRED	FORM
Maxterm	Expansion	of	F	Minterm	Expansion	of	F′	Maxterm	Expansion	of	F′	Minterm	Expansion	of	F	____________	maxterm	nos.	are	those	nos.	not	on	the	minterm	list	for	F	list	minterms	not	present	in	F	maxterm	nos.	are	the	same	as	minterm	nos.	of	F	Maxterm	Expansion	of	F	minterm	nos.	are	those	nos.	not	on	the	maxterm	list	for	F	____________
minterm	nos.	are	the	same	as	maxterm	nos.	of	F	list	maxterms	not	present	in	F	TABLE	4-4	Application	of	Table	4.3	©	Cengage	Learning	2014	GIVEN	FORM	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	DESIRED	FORM	Maxterm	Minterm	Expansion	Expansion	of	f	of	f	f=	Σ	m(3,	4,	5,	6,	7)	f=	Π	M(0,	1,	2)	____________	Σ	m(3,	4,	5,
6,	7)	Minterm	Expansion	of	f	′	Π	M(0,	1,	2)	Σ	m(0,	1,	2)	_________	Σ	m(0,	1,	2)	103	Maxterm	Expansion	of	f	′	Π	M(3,	4,	5,	6,	7)	Π	M(3,	4,	5,	6,	7)	4.5	Incompletely	Specified	Functions	A	large	digital	system	is	usually	divided	into	many	subcircuits.	Consider	the	following	example	in	which	the	output	of	circuit	N1	drives	the	input	of	circuit	N2.	w	x	y	z	A	N1
B	N2	F	C	Let	us	assume	that	the	output	of	N1	does	not	generate	all	possible	combinations	of	values	for	A,	B,	and	C.	In	particular,	we	will	assume	that	there	are	no	combinations	of	values	for	w,	x,	y,	and	z	which	cause	A,	B,	and	C	to	assume	values	of	001	or	110.	Hence,	when	we	design	N2,	it	is	not	necessary	to	specify	values	of	F	for	ABC	=	001	or	110
because	these	combinations	of	values	can	never	occur	as	inputs	to	N2.	For	example,	F	might	be	specified	by	Table	4-5.	The	X’s	in	the	table	indicate	that	we	don’t	care	whether	the	value	of	0	or	1	is	assigned	to	F	for	the	combinations	ABC	=	001	or	110.	In	this	example,	we	don’t	care	what	the	value	of	F	is	because	these	input	combinations	never	occur
anyway.	The	function	F	is	then	incompletely	specified.	The	minterms	A′B′C	and	ABC′	are	referred	to	as	don’t-care	minterms,	since	we	don’t	care	whether	they	are	present	in	the	function	or	not.	TABLE	4-5	Truth	Table	with	Don’t-Cares	©	Cengage	Learning	2014	A	0	0	0	0	1	1	1	1	B	0	0	1	1	0	0	1	1	C	0	1	0	1	0	1	0	1	F	1	X	0	1	0	0	X	1	104	Unit	4	When	we
realize	the	function,	we	must	specify	values	for	the	don’t-cares.	It	is	desirable	to	choose	values	which	will	help	simplify	the	function.	If	we	assign	the	value	0	to	both	X’s,	then	F	=	A′B′C′	+	A′BC	+	ABC	=	A′B′C′	+	BC	If	we	assign	1	to	the	first	X	and	0	to	the	second,	then	F	=	A′B′C′	+	A′B′C	+	A′BC	+	ABC	=	A′B′	+	BC	If	we	assign	1	to	both	X’s,	then	F	=
A′B′C′	+	A′B′C	+	A′BC	+	ABC′	+	ABC	=	A′B′	+	BC	+	AB	The	second	choice	of	values	leads	to	the	simplest	solution.	We	have	seen	one	way	in	which	incompletely	specified	functions	can	arise,	and	there	are	many	other	ways.	In	the	preceding	example,	don’t-cares	were	present	because	certain	combinations	of	circuit	inputs	did	not	occur.	In	other	cases,
all	input	combinations	may	occur,	but	the	circuit	output	is	used	in	such	a	way	that	we	do	not	care	whether	it	is	0	or	1	for	certain	input	combinations.	When	writing	the	minterm	expansion	for	an	incompletely	specified	function,	we	will	use	m	to	denote	the	required	minterms	and	d	to	denote	the	don’t-care	minterms.	Using	this	notation,	the	minterm
expansion	for	Table	4-5	is	F	=	Σ	m(0,	3,	7)	+	Σ	d(1,	6)	For	each	don’t-care	minterm	there	is	a	corresponding	don’t-care	maxterm.	For	example,	if	F	=	X	(don’t-care)	for	input	combination	001,	m1	is	a	don’t-care	minterm	and	M1	is	a	don’t-care	maxterm.	We	will	use	D	to	represent	a	don’t-care	maxterm,	and	we	write	the	maxterm	expansion	of	the
function	in	Table	4-5	as	F	=	Π	M(2,	4,	5)	·	Π	D(1,	6)	which	implies	that	maxterms	M2,	M4,	and	M5	are	present	in	F	and	don’t-care	maxterms	M1	and	M6	are	optional.	4.6	Examples	of	Truth	Table	Construction	Example	1	We	will	design	a	simple	binary	adder	that	adds	two	1-bit	binary	numbers,	a	and	b,	to	give	a	2-bit	sum.	The	numeric	values	for	the
adder	inputs	and	output	are	as	follows:	a	b	Sum	0	0	1	1	00	01	01	10	0	1	0	1	(0	+	0	=	0)	(0	+	1	=	1)	(1	+	0	=	1)	(1	+	1	=	2)	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	105	We	will	represent	inputs	to	the	adder	by	the	logic	variables	A	and	B	and	the	2-bit	sum	by	the	logic	variables	X	and	Y,	and	we	construct	a	truth	table:	A	0	0	1	1
B	0	1	0	1	X	0	0	0	1	Y	0	1	1	0	Because	a	numeric	value	of	0	is	represented	by	a	logic	0	and	a	numeric	value	of	1	by	a	logic	l,	the	0’s	and	1’s	in	the	truth	table	are	exactly	the	same	as	in	the	previous	table.	From	the	truth	table,	X	=	AB	and	Y	=	A′B	+	AB′	=	A	⊕	B	Example	2	An	adder	is	to	be	designed	which	adds	two	2-bit	binary	numbers	to	give	a	3-bit
binary	sum.	Find	the	truth	table	for	the	circuit.	The	circuit	has	four	inputs	and	three	outputs	as	shown:	N1	N2	A	B	C	D	X	Y	Z	N3	N1	$%&	AB	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	TRUTH	TABLE:	N2	N	$%&	$'%3'&	XYZ	CD	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	1	0	0	1	1	0	1	1	1	0	0	1	1	0	1	1	0	1
1	0	0	1	0	0	1	0	1	0	1	1	0	1	0	0	1	0	1	1	0	1	0	Inputs	A	and	B	taken	together	represent	a	binary	number	N1.	Inputs	C	and	D	taken	together	represent	a	binary	number	N2.	Outputs	X,	Y,	and	Z	taken	together	represent	a	binary	number	N3,	where	N3	=	N1	+	N2	(+	of	course	represents	ordinary	addition	here).	In	this	example	we	have	used	A,	B,	C,	and	D
to	represent	both	numeric	values	and	logic	values,	but	this	should	not	cause	any	confusion	because	the	numeric	and	106	Unit	4	logic	values	are	the	same.	In	forming	the	truth	table,	the	variables	were	treated	like	binary	numbers	having	numeric	values.	Now	we	wish	to	derive	the	switching	functions	for	the	output	variables.	In	doing	so,	we	will	treat	A,
B,	C,	D,	X,	Y,	and	Z	as	switching	variables	having	nonnumeric	values	0	and	1.	(Remember	that	in	this	case	the	0	and	1	may	represent	low	and	high	voltages,	open	and	closed	switches,	etc.)	From	inspection	of	the	table,	the	output	functions	are	X(A,	B,	C,	D)	=	Σ	m(7,	10,	11,	13,	14,	15)	Y(A,	B,	C,	D)	=	Σ	m(2,	3,	5,	6,	8,	9,	12,	15)	Z(A,	B,	C,	D)	=	Σ	m(1,	3,
4,	6,	9,	11,	12,	14)	Example	3	Design	an	error	detector	for	6-3-1-1	binary-coded-decimal	digits.	The	output	(F)	is	to	be	1	iff	the	four	inputs	(A,	B,	C,	D)	represent	an	invalid	code	combination.	The	valid	6-3-1-1	code	combinations	are	listed	in	Table	1-2.	If	any	other	combination	occurs,	this	is	not	a	valid	6-3-1-1	binary-coded-decimal	digit,	and	the	circuit
output	should	be	F	=	1	to	indicate	that	an	error	has	occurred.	This	leads	to	the	following	truth	table:	A	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	B	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	C	D	0	0	0	1	1	0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1	0	1	1	F	0	0	1	0	0	0	1	0	0	0	1	0	0	1	1	1	The	corresponding	output	function	is	F	=	Σ	m(2,	6,	10,	13,	14,	15)	=	A′B′CD′	+	A′BCD′	+
AB′CD′	+'	ABCD′	+	ABC′D	+	ABCD	(''''*	'(('''''*	('''''	(=	A′CD′	+	ACD′	+	ABD	=	CD′	+	ABD	(''''*	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	107	The	realization	using	AND	and	OR	gates	is	C	F	D′	A	B	D	Example	4	The	four	inputs	to	a	circuit	(A,	B,	C,	D)	represent	an	8-4-2-1	binary-coded-decimal	digit.	Design	the	circuit	so	that	the
output	(Z)	is	1	iff	the	decimal	number	represented	by	the	inputs	is	exactly	divisible	by	3.	Assume	that	only	valid	BCD	digits	occur	as	inputs.	The	digits	0,	3,	6,	and	9	are	exactly	divisible	by	3,	so	Z	=	1	for	the	input	combinations	ABCD	=	0000,	0011,	0110,	and	1001.	The	input	combinations	1010,	1011,	1100,	1101,	1110,	and	1111	do	not	represent	valid
BCD	digits	and	will	never	occur,	so	Z	is	a	don’t-care	for	these	combinations.	This	leads	to	the	following	truth	table:	A	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	B	C	0	0	0	0	0	1	0	1	1	0	1	0	1	1	1	1	0	0	0	0	0	1	0	1	1	0	1	0	1	1	1	1	D	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	Z	1	0	0	1	0	0	1	0	0	1	X	X	X	X	X	X	The	corresponding	output	function	is	Z	=	Σ	m(0,	3,	6,	9)	+	Σ	d(10,	11,	12,
13,	14,	15)	In	order	to	find	the	simplest	circuit	which	will	realize	Z,	we	must	choose	some	of	the	don’t-cares	(X’s)	to	be	0	and	some	to	be	1.	The	easiest	way	to	do	this	is	to	use	a	Karnaugh	map	as	described	in	Unit	5.	108	Unit	4	4.7	Design	of	Binary	Adders	and	Subtracters	In	this	section,	we	will	design	a	parallel	adder	that	adds	two	4-bit	unsigned
binary	numbers	and	a	carry	input	to	give	a	4-bit	sum	and	a	carry	output	(see	Figure	4-2).	One	approach	would	be	to	construct	a	truth	table	with	nine	inputs	and	five	outputs	and	then	derive	and	simplify	the	five	output	equations.	Because	each	equation	would	be	a	function	of	nine	variables	before	simplification,	this	approach	would	be	very	difficult,
and	the	resulting	logic	circuit	would	be	very	complex.	A	better	method	is	to	design	a	logic	module	that	adds	two	bits	and	a	carry,	and	then	connect	four	of	these	modules	together	to	form	a	4-bit	adder	as	shown	in	Figure	4-3.	Each	of	the	modules	is	called	a	full	adder.	The	carry	output	from	the	first	full	adder	serves	as	the	carry	input	to	the	second	full
adder,	etc.	FIGURE	4-2	Parallel	Adder	for	4-Bit	Binary	Numbers	S3	S2	S0	4-bit	Parallel	Adder	C4	©	Cengage	Learning	2014	S1	C0	A3	B3	A2	B2	A1	B1	A0	B0	FIGURE	4-3	Parallel	Adder	Composed	of	Four	Full	Adders	C4	©	Cengage	Learning	2014	1	S3	0	S2	C3	Full	Adder	A3	0	B3	1	1	1	S1	C2	Full	Adder	A2	1	B2	0	0	1	S0	C1	Full	Adder	A1	1	B1	1	1	0
C0	Full	Adder	A0	0	B0	1	1	end-around	carry	for	1’s	complement	In	the	example	of	Figure	4-3,	we	perform	the	following	addition:	10110	(carries)	1011	+	1011	10110	The	full	adder	to	the	far	right	adds	A0	+	B0	+	C0	=	1	+	1	+	0	to	give	a	sum	of	102,	which	gives	a	sum	S0	=	0	and	a	carry	out	of	C1	=	1.	The	next	full	adder	adds	A1	+	B1	+	C1	=	1	+	1
+	1	=	112,	which	gives	a	sum	S1	=	1	and	a	carry	C2	=	1.	The	carry	continues	to	propagate	from	right	to	left	until	the	left	cell	produces	a	final	carry	of	C4	=	1.	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	FIGURE	4-4	Truth	Table	for	a	Full	Adder	X	Y	Cin	Cout	Full	Adder	Sum	©	Cengage	Learning	2014	X	Y	Cin	Cout	Sum	0	0	0	0	1
1	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	0	1	0	0	0	1	0	1	1	1	0	1	1	0	1	0	0	1	109	Figure	4-4	gives	the	truth	table	for	a	full	adder	with	inputs	X,	Y,	and	Cin.	The	outputs	for	each	row	of	the	table	are	found	by	adding	up	the	input	bits	(X	+	Y	+	Cin)	and	splitting	the	result	into	a	carry	out	(Ci+1)	and	a	sum	bit	(Si)	.	For	example,	in	the	101	row	1	+	0	+	1	=	102,	so
Ci+1	=	1	and	Si	=	0.	Figure	4-5	shows	the	implementation	of	the	full	adder	using	gates.	The	logic	equations	for	the	full	adder	derived	from	the	truth	table	are	Sum	=	X′Y′Cin	+	X′YC′in	+	XY′C′in	+	XYCin	=	X′(Y′Cin	+	YC′in)	+	X(Y′C′in	+	YCin)	=	X′(Y	⊕	Cin)	+	X(Y	⊕	Cin)′	=	X	⊕	Y	⊕	Cin	(4-20)	Cout	=	X′YCin	+	XY′Cin	+	XYC′in	+	XYCin	=	(X′YCin	+	XYCin)
+	(XY′Cin	+	XYCin)	+	(XYC′in	+	XYCin)	=	YCin	+	XCin	+	XY	(4-21)	Note	that	the	term	XYCin	was	used	three	times	in	simplifying	Cout.	Figure	4-5	shows	the	logic	circuit	for	Equations	(4-20)	and	(4-21).	FIGURE	4-5	Implementation	of	Full	Adder	©	Cengage	Learning	2014	x	y	x	y	cin	Sum	x	cin	cout	y	cin	Although	designed	for	unsigned	binary	numbers,
the	parallel	adder	of	Figure	4-3	can	also	be	used	for	signed	binary	numbers	with	negative	numbers	expressed	in	complement	form.	When	2’s	complement	is	used,	the	last	carry	(C4)	is	discarded,	and	there	is	no	carry	into	the	first	cell.	Because	C0	=	0,	the	equations	for	the	first	cell	may	be	simplified	to	S0	=	A0	⊕	B0	and	C1	=	A0	B0	When	1’s
complement	is	used,	the	end-around	carry	is	accomplished	by	connecting	C4	to	the	C0	input,	as	shown	by	the	dashed	line	in	Figure	4-3.	When	adding	signed	binary	numbers	with	negative	numbers	expressed	in	complement	form,	the	sign	bit	of	the	sum	is	wrong	when	an	overflow	occurs.	That	is,	an	overflow	has	occurred	if	adding	two	positive	numbers
gives	a	negative	result,	or	adding	two	negative	numbers	gives	a	positive	result.	We	will	define	a	signal	V	that	110	Unit	4	is	1	when	an	overflow	occurs.	For	Figure	4-3,	we	can	use	the	sign	bits	of	A,	B,	and	S	(the	sum)	to	determine	the	value	of	V:	V	=	A3′	B3′	S3	+	A3B3S3′	(4-22)	If	the	number	of	bits	is	large,	a	parallel	binary	adder	of	the	type	shown	in
Figure	4-4	may	be	rather	slow	because	the	carry	generated	in	the	first	cell	might	have	to	propagate	all	of	the	way	to	the	last	cell.	Subtraction	of	binary	numbers	is	most	easily	accomplished	by	adding	the	complement	of	the	number	to	be	subtracted.	To	compute	A	−	B,	add	the	complement	of	B	to	A.	This	gives	the	correct	answer	because	A	+	(−B)	=	A
−	B.	Either	1’s	or	2’s	complement	is	used	depending	on	the	type	of	adder	employed.	The	circuit	of	Figure	4-6	may	be	used	to	form	A	−	B	using	the	2’s	complement	representation	for	negative	numbers.	The	2’s	complement	of	B	can	be	formed	by	first	finding	the	1’s	complement	and	then	adding	1.	The	1’s	complement	is	formed	by	inverting	each	bit	of
B,	and	the	addition	of	1	is	effectively	accomplished	by	putting	a	1	into	the	carry	input	of	the	first	full	adder.	S4	FIGURE	4-6	Binary	Subtracter	Using	Full	Adders	©	Cengage	Learning	2014	c5	(Ignore	last	carry)	Full	Adder	B′4	A4	Example	S3	B4	c4	S2	Full	Adder	c3	c2	Full	Adder	B′3	A3	B3	S1	Full	Adder	B′2	A2	B2	c1	=	1	B′1	A1	B1	A	=	0110	(+6)	B	=
0011	(+3)	The	adder	output	is	0110	+1100	+	1	(1)	0011	=	3	=	(+6)	(1’s	complement	of	3)	(first	carry	input)	6−3	Alternatively,	direct	subtraction	can	be	accomplished	by	employing	a	full	subtracter	in	a	manner	analogous	to	a	full	adder.	A	block	diagram	for	a	parallel	subtracter	which	subtracts	Y	from	X	is	shown	in	Figure	4-7.	The	first	two	bits	are
subtracted	in	the	rightmost	cell	to	give	a	difference	d1,	and	a	borrow	signal	(b2	=	1)	is	generated	if	it	is	necessary	to	borrow	from	the	next	column.	A	typical	cell	(cell	i)	has	inputs	xi,	yi,	and	bi,	and	outputs	bi+1	and	di.	An	input	bi	=	1	indicates	that	we	must	borrow	1	from	xi	in	that	cell,	and	borrowing	1	from	xi	is	equivalent	to	subtracting	1	from	xi.	In
cell	i,	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	dn	FIGURE	4-7	Parallel	Subtracter	©	Cengage	Learning	2014	bn	+	1	di	Full	Subtracter	bn	bi	+	1	d1	d2	Full	Subtracter	bi	b3	111	Full	Subtracter	b2	Full	Subtracter	b1	=	0	Cell	i	xn	TABLE	4-6	Truth	Table	for	Binary	Full	Subtracter	©	Cengage	Learning	2014	xi	0	0	0	0	1	1	1	1	yi
0	0	1	1	0	0	1	1	yn	xi	yi	x2	y2	x1	y1	bi	bi+1di	0	0	0	1	1	1	0	1	1	1	1	0	0	0	1	1	0	0	0	0	0	1	1	1	bits	bi	and	yi	are	subtracted	from	xi	to	form	the	difference	di,	and	a	borrow	signal	(bi+1	=	1)	is	generated	if	it	is	necessary	to	borrow	from	the	next	column.	Table	4-6	gives	the	truth	table	for	a	binary	full	subtracter.	Consider	the	following	case,	where	xi	=	0,	yi	=
1	and	bi	=	1:	xi	−bi	−yi	di	Column	i	Before	Borrow	0	−1	−1	Column	i	After	Borrow	10	−1	−1	0	(bi+1	=	1)	Note	that	in	column	i,	we	cannot	immediately	subtract	yi	and	bi	from	xi.	Hence,	we	must	borrow	from	column	i	+	1.	Borrowing	1	from	column	i	+	1	is	equivalent	to	setting	bi+1	to	1	and	adding	10	(210)	to	xi.	We	then	have	di	=	10	−	1	−	1	=	0.
Verify	that	Table	4-6	is	correct	for	the	other	input	combinations	and	use	it	to	work	out	several	examples	of	binary	subtraction.	The	ripple	carry	adder	is	relatively	slow	because,	in	the	worst	case,	a	carry	propagates	through	all	stages	of	the	adder,	and	there	are	two	gate	delays	per	stage.	There	are	several	techniques	for	reducing	the	carry	propagation
time.	One	is	called	a	carrylookahead	adder.	In	the	parallel	adder	the	carry	out	of	the	ith	stage	can	be	written	as	Ci+1	=	Ai	Bi	+	Ci(Ai	+	Bi)	=	Ai	Bi	+	Ci(Ai	⊕	Bi)	=	Gi	+	PiCi	112	Unit	4	where	Gi	=	Ai	Bi	indicates	the	condition	for	the	ith	stage	to	generate	a	carry	out	and	Pi	=	Ai	⊕	Bi	(or	Pi	=	Ai	+	Bi)	indicates	the	condition	for	the	ith	stage	to	propagate
a	carry	in	to	the	carry	out.	Then	Ci+2	can	be	expressed	in	terms	of	Ci.	Ci+2	=	Gi+1	+	Pi+1Ci+1	=	Gi+1	+	(Gi	+	Ci	Pi)Pi+1	=	Gi+1	+	Pi+1Gi	+	Pi+1PiCi	This	can	be	continued	to	express	Ci+2,	Ci+3,	etc.	in	terms	of	Ci.	Ci+1	Ci+2	Ci+3	Ci+4	=	Gi	+	PiCi	=	Gi+1	+	Pi+1Gi	+	Pi+1PiCi	(4-23)	=	Gi+2	+	Pi+2Gi+1	+	Pi+2	Pi+1Gi	+	Pi+2	Pi+1PiCi	=	Gi+3
+	Pi+3Gi+2	+	Pi+3	Pi+2Gi+1	+	Pi+3	Pi+2	Pi+1Gi	+	Pi+3	Pi+2	Pi+1PiCi	Assuming	that	the	maximum	fan-in	of	the	gates	is	not	exceeded,	each	of	these	equations	can	be	implemented	in	a	two-level	circuit	so,	if	a	change	in	Ci	propagates	to	Cj	(j	=	i	+	1,	i	+	2,	·	·	·),	it	does	so	with	a	delay	of	two	gates.	Equations	(4-23)	are	the	carry-lookahead
equations.	If	a	circuit	implements,	for	example,	four	of	the	equations,	it	is	a	4-bit	carry-lookahead	circuit.	Figure	4-8	shows	a	4-bit	parallel	adder	using	a	4-bit	carry-lookahead	circuit.	(The	sum	outputs	are	not	shown.)	After	the	generate	and	propagate	outputs	of	the	full	adders	are	stable,	if	a	change	in	C0	propagates	to	Ci	(i	=	1,	2,	3,	or	4),	it	does	so	in
two	gate	delays.	Similarly,	if	a	change	in	C1	propagates	to	Ci	(i	=	2,	3,	or	4),	it	does	so	in	two	gate	delays.	In	the	4-bit	ripple-carry	adder	a	change	in	C0	propagating	to	C4	requires	8	gate	delays.	FIGURE	4-8	4-Bit	Adder	with	Carry-Lookahead	A3	Full	Adder	©	Cengage	Learning	2014	G3	C4	A2	B3	C3	P3	Full	Adder	G2	A1	B2	C2	P2	Full	Adder	G1	A0	B1
C1	P1	4-bit	Carry-Lookahead	Circuit	B0	Full	Adder	G0	P0	C0	The	carry-lookahead	circuit	can	be	increased	in	size	to	reduce	the	delay	in	longer	parallel	adders;	however,	the	gate	fan-in	increases	linearly	with	the	size	of	the	carrylookahead	circuit	so	the	size	is	limited	by	the	maximum	fan-in	available.	For	longer	adders	the	carry-lookahead	circuits	can
be	cascaded.	For	example,	a	16-bit	parallel	adder	can	be	implemented	using	four	4-bit	carry-lookahead	circuits,	as	shown	in	Figure	4-9.	Now	the	speed	of	the	circuit	is	determined	by	the	number	of	carrylookahead	circuits	required.	In	Figure	4-9	the	propagation	delay	from	C0	to	C16	would	be	8	gate	delays;	a	16-bit	ripple-carry	adder	would	have	a
delay	of	32	gates.	To	reduce	the	delay	of	the	adder	without	increasing	the	size	of	the	carrylookahead	circuit,	a	second	level	of	carry-lookahead	circuits	can	be	connected	to	the	first	level	carry-lookahead	circuits.	To	illustrate	this,	the	equations	for	the	four	carry-lookahead	circuits	in	Figure	4-9	are	written	in	same	form	as	Equation	(4-23).	Applications
of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	FIGURE	4-9	16-Bit	Adder	with	Carry-Lookahead	A12–15	B12–15	C0–3	Full	Adders	©	Cengage	Learning	2014	G12–15	C16	A8–11	B8–11	P12–15	C8–11	Full	Adders	G8–11	A4–7	P8–11	A0–3	B0–3	B4–7	C4–7	Full	Adders	G4–7	113	P4–7	C0–3	Full	Adders	G0–3	P0–3	C12	C8	C4	C0	4-bit	4-bit	4-bit	4-bit
Carry-Lookahead	Carry-Lookahead	Carry-Lookahead	Carry-Lookahead	C4	=	G0	+	P0C0	where	G0	=	G3	+	P3G2	+	P3P2G1	+	P3P2	P1G0	and	P0	=	P3P2	P1P0	C8	=	G4	+	P4C4	where	G4	=	G7	+	P7G6	+	P7P6G5	+	P7P6P5G4	and	P4	=	P7P6P5P4	C12	=	G8	+	P8C8	where	G8	=	G11	+	P11G10	+	P11P10G9	+	P11P10P9G8	and	P8	=	P11P10P9P8	C16	=
G12	+	P12C12	where	G12	=	G15	+	P15G14	+	P15P14G13	+	P15P14P13G12	and	P12	=	P15P14P13P12	Now	these	equations	for	C4,	C8,	C12,	and	C16	can	be	written	in	terms	of	C0.	C4	=	C8	=	C12	=	C16	=	G0	G4	G8	G12	+	P0C0	+	P4G0	+	P4	P0C0	+	P8G4	+	P8	P4G0	+	P8	P4	P0C0	+	P12G8	+	P12	P8G4	+	P12	P8	P4G0	+	P12	P8	P4	P0C0	These
equations	are	the	same	as	those	for	a	4-bit	carry-lookahead	circuit.	The	first	level	carry-lookahead	circuits	can	be	modified	to	produce	Gi	and	Pi	instead	of	Ci,	i	=	0,	4,	8,	and	12.	These	provide	inputs	to	a	second	level	carry-lookahead	circuit,	as	shown	in	Figure	4-10.	Now	the	propagation	delay	from	C0	to	Ci,	i	=	4,	8,	12,	and	16,	is	just	two	gate	delays.
A12–15	B12–15	FIGURE	4-10	16-Bit	Adder	with	Second	Level	Carry-Lookahead	C12–15	Full	Adders	©	Cengage	Learning	2014	G12–15	A8–11	B8–11	P12–15	C8–11	Full	Adders	G8–11	A4–7	P8–11	B4–7	C4–7	Full	Adders	G4–7	A0–3	P4–7	B0–3	C0–3	Full	Adders	G0–3	P0–3	C0	C8	C4	C12	4-bit	4-bit	4-bit	4-bit	Carry-Lookahead	Carry-Lookahead	Carry-
Lookahead	Carry-Lookahead	G12	C16	P12	G8	P8	G4	P4	4-bit	Carry-Lookahead	Circuit	G0	P0	114	Unit	4	Ci+1	=	Gi	+	PiGi−1	+	Pi	Pi−1Gi−2	+	Pi	Pi−1Pi−2Gi−3	+	Pi	Pi−1Pi−2Pi−3Ci−3	C4	=	G3	+	P3G2	+	P3P2G1	+	P3P2P1G0	+	P3P2P1P0C0	=	G0	+	P0C0	This	expression	can	be	expanded	to	express	Ci+1	in	terms	of	Ci−1.	Ci+1	=	Gi	+	Ci	Pi	+	Gi	=
(Gi−1	+	Ci−1Pi−1)Pi	=	Gi	+	PiGi−1	+	Pi	Pi−1Ci−1	This	procedure	can	be	continued	to	obtain	Ci+1	Ci+1	Ci+1	Ci+1	=	=	=	=	Gi	+	Gi	+	Gi	+	Gi	+	CiPi	PiGi−1	+	Pi	Pi−1Ci−1	PiGi−1	+	Pi	Pi−1Gi−2	+	Pi	Pi−1Pi−2Ci−2	PiGi−1	+	Pi	Pi−1Gi−2	+	Pi	Pi−1Pi−2Gi−3	+	Pi	Pi−1Pi−2Pi−3Ci−3	and	so	on.	Problems	4.1	Represent	each	of	the	following
sentences	by	a	Boolean	equation.	(a)	The	company	safe	should	be	unlocked	only	when	Mr.	Jones	is	in	the	office	or	Mr.	Evans	is	in	the	office,	and	only	when	the	company	is	open	for	business,	and	only	when	the	security	guard	is	present.	(b)	You	should	wear	your	overshoes	if	you	are	outside	in	a	heavy	rain	and	you	are	wearing	your	new	suede	shoes,	or
if	your	mother	tells	you	to.	(c)	You	should	laugh	at	a	joke	if	it	is	funny,	it	is	in	good	taste,	and	it	is	not	offensive	to	others,	or	if	it	is	told	in	class	by	your	professor	(regardless	of	whether	it	is	funny	and	in	good	taste)	and	it	is	not	offensive	to	others.	(d)	The	elevator	door	should	open	if	the	elevator	is	stopped,	it	is	level	with	the	floor,	and	the	timer	has	not
expired,	or	if	the	elevator	is	stopped,	it	is	level	with	the	floor,	and	a	button	is	pressed.	4.2	A	flow	rate	sensing	device	used	on	a	liquid	transport	pipeline	functions	as	follows.	The	device	provides	a	5-bit	output	where	all	five	bits	are	zero	if	the	flow	rate	is	less	than	10	gallons	per	minute.	The	first	bit	is	1	if	the	flow	rate	is	at	least	10	gallons	per	minute;
the	first	and	second	bits	are	1	if	the	flow	rate	is	at	least	20	gallons	per	minute;	the	first,	second,	and	third	bits	are	1	if	the	flow	rate	is	at	least	30	gallons	per	minute;	and	so	on.	The	five	bits,	represented	by	the	logical	variables	A,	B,	C,	D,	and	E,	are	used	as	inputs	to	a	device	that	provides	two	outputs	Y	and	Z.	(a)	Write	an	equation	for	the	output	Y	if	we
want	Y	to	be	1	iff	the	flow	rate	is	less	than	30	gallons	per	minute.	(b)	Write	an	equation	for	the	output	Z	if	we	want	Z	to	be	1	iff	the	flow	rate	is	at	least	20	gallons	per	minute	but	less	than	50	gallons	per	minute.	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	115	4.3	Given	F1	=	Σ	m(0,	4,	5,	6)	and	F2	=	Σ	m(0,	3,	6,	7)	find	the
minterm	expression	for	F1	+	F2.	State	a	general	rule	for	finding	the	expression	for	F1	+	F2	given	the	minterm	expansions	for	F1	and	F2.	Prove	your	answer	by	using	the	general	form	of	the	minterm	expansion.	4.4	(a)	How	many	switching	functions	of	two	variables	(x	and	y)	are	there?	(b)	Give	each	function	in	truth	table	form	and	in	reduced	algebraic
form.	4.5	A	combinational	circuit	is	divided	into	two	subcircuits	N1	and	N2	as	shown.	The	truth	table	for	N1	is	given.	Assume	that	the	input	combinations	ABC	=	110	and	ABC	=	010	never	occur.	Change	as	many	of	the	values	of	D,	E,	and	F	to	don’t-cares	as	you	can	without	changing	the	value	of	the	output	Z.	N1	A	A	0	0	0	0	1	1	1	1	N2	D	E	B	C	F	Z	B	0
0	1	1	0	0	1	1	C	0	1	0	1	0	1	0	1	D	1	0	0	1	1	1	0	0	E	1	0	1	1	0	0	1	0	F	0	1	1	1	0	1	0	0	4.6	Work	(a)	and	(b)	with	the	following	truth	table:	A	0	0	0	0	1	1	1	1	B	0	0	1	1	0	0	1	1	C	0	1	0	1	0	1	0	1	F	1	X	0	0	0	X	1	1	G	0	1	X	1	0	1	X	1	(a)	Find	the	simplest	expression	for	F,	and	specify	the	values	of	the	don’t-cares	that	lead	to	this	expression.	(b)	Repeat	(a)	for	G.
(Hint:	Can	you	make	G	the	same	as	one	of	the	inputs	by	properly	choosing	the	values	for	the	don’t-care?)	4.7	Each	of	three	coins	has	two	sides,	heads	and	tails.	Represent	the	heads	or	tails	status	of	each	coin	by	a	logical	variable	(A	for	the	first	coin,	B	for	the	second	coin,	and	C	for	the	third)	where	the	logical	variable	is	1	for	heads	and	0	for	tails.
Write	a	logic	function	F(A,	B,	C)	which	is	1	iff	exactly	one	of	the	coins	is	heads	after	a	toss	of	the	coins.	Express	F	(a)	as	a	minterm	expansion.	(b)	as	a	maxterm	expansion.	116	Unit	4	4.8	A	switching	circuit	has	four	inputs	as	shown.	A	and	B	represent	the	first	and	second	bits	of	a	binary	number	N1.	C	and	D	represent	the	first	and	second	bits	of	a
binary	number	N2.	The	output	is	to	be	1	only	if	the	product	N1	×	N2	is	less	than	or	equal	to	2.	(a)	Find	the	minterm	expansion	for	F.	(b)	Find	the	maxterm	expansion	for	F.	Express	your	answers	in	both	decimal	notation	and	algebraic	form.	N1	N2	A	B	C	D	F	4.9	Given:	F(a,	b,	c)	=	abc′	+	b′.	(a)	Express	F	as	a	minterm	expansion.	(Use	m-notation.)	(b)
Express	F	as	a	maxterm	expansion.	(Use	M-notation.)	(c)	Express	F′	as	a	minterm	expansion.	(Use	m-notation.)	(d)	Express	F′	as	a	maxterm	expansion.	(Use	M-notation.)	4.10	Work	Problem	4.9	using:	F(a,	b,	c,	d)	=	(a	+	b	+	d)(a′	+	c)(a′	+	b′	+	c′)(a	+	b	+	c′	+	d′)	4.11	(a)	Implement	a	full	subtracter	using	a	minimum	number	of	gates.	(b)	Compare	the
logic	equations	for	the	full	adder	and	full	subtracter.	What	is	the	relation	between	si	and	di?	Between	ci+1	and	bi+1?	4.12	Design	a	circuit	which	will	perform	the	following	function	on	three	4-bit	numbers:	(X3	X2	X1	X0	+	Y3Y2Y1Y0)	−	Z3Z2Z1Z0	It	will	give	a	result	S3S2S1S0,	a	carry,	and	a	borrow.	Use	eight	full	adders	and	any	other	type	of	gates.
Assume	that	negative	numbers	are	represented	in	2’s	complement.	4.13	A	combinational	logic	circuit	has	four	inputs	(A,	B,	C,	and	D)	and	one	output	Z.	The	output	is	1	iff	the	input	has	three	consecutive	0’s	or	three	consecutive	1’s.	For	example,	if	A	=	1,	B	=	0,	C	=	0,	and	D	=	0,	then	Z	=	1,	but	if	A	=	0,	B	=	1,	C	=	0,	and	D	=	0,	then	Z	=	0.	Design	the
circuit	using	one	four-input	OR	gate	and	four	three-input	AND	gates.	4.14	Design	a	combinational	logic	circuit	which	has	one	output	Z	and	a	4-bit	input	ABCD	representing	a	binary	number.	Z	should	be	1	iff	the	input	is	at	least	5,	but	is	no	greater	than	11.	Use	one	OR	gate	(three	inputs)	and	three	AND	gates	(with	no	more	than	three	inputs	each).	4.15
A	logic	circuit	realizing	the	function	f	has	four	inputs	A,	B,	C,	and	D.	The	three	inputs	A,	B,	and	C	are	the	binary	representation	of	the	digits	0	through	7	with	A	being	the	most-significant	bit.	The	input	D	is	an	odd-parity	bit,	i.e.,	the	value	of	D	is	such	that	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	117	A,	B,	C,	and	D	always
contain	an	odd	number	of	1’s.	(For	example,	the	digit	1	is	represented	by	ABC	=	001	and	D	=	0,	and	the	digit	3	is	represented	by	ABCD	=	0111.)	The	function	f	has	value	1	if	the	input	digit	is	a	prime	number.	(A	number	is	prime	if	it	is	divisible	only	by	itself	and	1;	1	is	considered	to	be	prime	and	0	is	not.)	(a)	List	the	minterms	and	don’t-care	minterms
of	f	in	algebraic	form.	(b)	List	the	maxterms	and	don’t-care	maxterms	of	f	in	algebraic	form.	4.16	A	priority	encoder	circuit	has	four	inputs,	x3,	x2,	x1,	and	x0.	The	circuit	has	three	outputs:	z,	y1,	and	y0.	If	one	of	the	inputs	is	1,	z	is	1	and	y1	and	y0	represent	a	2-bit,	binary	number	whose	value	equals	the	index	of	the	highest	numbered	input	that	is	1.

For	example,	if	x2	is	1	and	x3	is	0,	then	the	outputs	are	z	=	1	and	y1	=	1	and	y0	=	0.	If	all	inputs	are	0,	z	=	0	and	y1	and	y0	are	don’t-cares.	(a)	List	in	decimal	form	the	minterms	and	don’t-care	minterms	of	each	output.	(b)	List	in	decimal	form	the	maxterms	and	don’t-care	maxterms	of	each	output.	4.17	The	9’s	complement	of	a	decimal	digit	d	(0	to	9)
is	defined	to	be	9	−	d.	A	logic	circuit	produces	the	9’s	complement	of	an	input	digit	where	the	input	and	output	digits	are	represented	in	BCD.	Label	the	inputs	A,	B,	C,	and	D,	and	label	the	outputs	W,	X,	Y	and	Z.	(a)	Determine	the	minterms	and	don’t-care	minterms	for	each	of	the	outputs.	(b)	Determine	the	maxterms	and	don’t-care	maxterms	for	each
of	the	outputs.	4.18	Repeat	Problem	4.17	for	the	case	where	the	input	and	output	digits	are	represented	using	the	4-2-2-1	weighted	code.	(If	only	one	weight	of	2	is	required	for	decimal	digits	less	than	5,	select	the	rightmost	2.	In	addition,	select	the	codes	so	that	W	=	A′,	X	=	B′,	Y	=	C′,	and	Z	=	D′.	(There	are	two	possible	codes	with	these	restrictions.)
4.19	Each	of	the	following	sentences	has	two	possible	interpretations	depending	on	whether	the	AND	or	OR	is	done	first.	Write	an	equation	for	each	interpretation.	(a)	The	buzzer	will	sound	if	the	key	is	in	the	ignition	switch,	and	the	car	door	is	open,	or	the	seat	belts	are	not	fastened.	(b)	You	will	gain	weight	if	you	eat	too	much,	or	you	do	not	exercise
enough,	and	your	metabolism	rate	is	too	low.	(c)	The	speaker	will	be	damaged	if	the	volume	is	set	too	high,	and	loud	music	is	played,	or	the	stereo	is	too	powerful.	(d)	The	roads	will	be	very	slippery	if	it	snows,	or	it	rains,	and	there	is	oil	on	the	road.	4.20	A	bank	vault	has	three	locks	with	a	different	key	for	each	lock.	Each	key	is	owned	by	a	different
person.	To	open	the	door,	at	least	two	people	must	insert	their	keys	into	the	assigned	locks.	The	signal	lines	A,	B,	and	C	are	1	if	there	is	a	key	inserted	into	lock	1,	2,	or	3,	respectively.	Write	an	equation	for	the	variable	Z	which	is	1	iff	the	door	should	open.	4.21	A	paper	tape	reader	used	as	an	input	device	to	a	computer	has	five	rows	of	holes	as	shown.
A	hole	punched	in	the	tape	indicates	a	logic	1,	and	no	hole	indicates	a	logic	0.	As	each	hole	pattern	passes	under	the	photocells,	the	pattern	is	translated	into	logic	signals	on	lines	A,	B,	C,	D,	and	E.	All	patterns	of	holes	indicate	a	valid	character	with	two	exceptions.	A	pattern	consisting	of	none	of	the	possible	holes	punched	is	not	118	Unit	4	used
because	it	is	impossible	to	distinguish	between	this	pattern	and	the	unpunched	space	between	patterns.	An	incorrect	pattern	punched	on	the	tape	is	erased	by	punching	all	five	holes	in	that	position.	Therefore,	a	valid	character	punched	on	the	tape	will	have	at	least	one	hole	but	will	not	have	all	five	holes	punched.	(a)	Write	an	equation	for	a	variable	Z
which	is	1	iff	a	valid	character	is	being	read.	(b)	Write	an	equation	for	a	variable	Y	which	is	1	iff	the	hole	pattern	being	read	has	holes	punched	only	in	rows	C	and	E.	Photocells	Variables	A	B	C	D	E	4.22	A	computer	interface	to	a	line	printer	has	seven	data	lines	that	control	the	movement	of	the	paper	and	the	print	head	and	determine	which	character
to	print.	The	data	lines	are	labeled	A,	B,	C,	D,	E,	F,	and	G,	and	each	represents	a	binary	0	or	1.	When	the	data	lines	are	interpreted	as	a	7-bit	binary	number	with	line	A	being	the	most	significant	bit,	the	data	lines	can	represent	the	numbers	0	to	12710.	The	number	1310	is	the	command	to	return	the	print	head	to	the	beginning	of	a	line,	the	number
1010	means	to	advance	the	paper	by	one	line,	and	the	numbers	3210	to	12710	represent	printing	characters.	(a)	Write	an	equation	for	the	variable	X	which	is	1	iff	the	data	lines	indicate	a	command	to	return	the	print	head	to	the	beginning	of	the	line.	(b)	Write	an	equation	for	the	variable	Y	which	is	1	iff	there	is	an	advance	paper	command	on	the	data
lines.	(c)	Write	an	equation	for	the	variable	Z	which	is	1	iff	the	data	lines	indicate	a	printable	character.	(Hint:	Consider	the	binary	representations	of	the	numbers	0–31	and	32–127	and	write	the	equation	for	Z	with	only	two	terms.)	4.23	Given	F1	=	Π	M(0,	4,	5,	6)	and	F2	=	Π	M(0,	4,	7),	find	the	maxterm	expansion	for	F1F2.	State	a	general	rule	for
finding	the	maxterm	expansion	of	F1F2	given	the	maxterm	expansions	of	F1	and	F2.	Prove	your	answer	by	using	the	general	form	of	the	maxterm	expansion.	4.24	Given	F1	=	Π	M(0,	4,	5,	6)	and	F2	=	Π	M(0,	4,	7),	find	the	maxterm	expansion	for	F1	+	F2.	State	a	general	rule	for	finding	the	maxterm	expansion	of	F1	+	F2,	given	the	maxterm	expansions
of	F1	and	F2.	Prove	your	answer	by	using	the	general	form	of	the	maxterm	expansion.	4.25	Four	chairs	are	placed	in	a	row:	A	B	C	D	Applications	of	Boolean	Algebra	Minterm	and	Maxterm	Expansions	119	Each	chair	may	be	occupied	(1)	or	empty	(0).	Give	the	minterm	and	maxterm	expansion	for	each	logic	function	described.	(a)	F(A,	B,	C,	D)	is	1	iff
there	are	no	adjacent	empty	chairs.	(b)	G(A,	B,	C,	D)	is	1	iff	the	chairs	on	the	ends	are	both	empty.	(c)	H(A,	B,	C,	D)	is	1	iff	at	least	three	chairs	are	full.	(d)	J(A,	B,	C,	D)	is	1	iff	there	are	more	people	sitting	in	the	left	two	chairs	than	in	the	right	two	chairs.	4.26	Four	chairs	(A,	B,	C,	and	D)	are	placed	in	a	circle:	A	next	to	B,	B	next	to	C,	C	next	to	D,	and
D	next	to	A.	Each	chair	may	be	occupied	(1)	or	empty	(0).	Give	the	minterm	and	maxterm	expansion	for	each	of	the	following	logic	functions:	(a)	F(A,	B,	C,	D)	is	1	iff	there	are	no	adjacent	empty	chairs.	(b)	G(A,	B,	C,	D)	is	1	iff	there	are	at	least	three	adjacent	empty	chairs.	(c)	H(A,	B,	C,	D)	is	1	iff	at	least	three	chairs	are	full.	(d)	J(A,	B,	C,	D)	is	1	iff	there
are	more	people	sitting	in	chairs	A	and	B	than	chairs	C	and	D.	4.27	Given	f(a,	b,	c)	=	a(b	+	c′).	(a)	Express	f	as	a	minterm	expansion	(use	m-notation).	(b)	Express	f	as	maxterm	expansion	(use	M-notation).	(c)	Express	f	′	as	a	minterm	expansion	(use	m-notation).	(d)	Express	f	′	as	a	maxterm	expansion	(use	M-notation).	4.28	Work	Problem	4.27	using	f(a,
b,	c,	d)	=	acd	+	bd′	+	a′c′d	+	ab′cd	+	a′b′cd′.	4.29	Find	both	the	minterm	expansion	and	maxterm	expansion	for	the	following	functions,	using	algebraic	manipulations:	(a)	f(A,	B,	C,	D)	=	AB	+	A′CD	(b)	f(A,	B,	C,	D)	=	(A	+	B	+	D′)(A′	+	C)(C	+	D)	4.30	Given	F′(A,	B,	C,	D)	=	Σ	m(0,	1,	2,	6,	7,	13,	15).	(a)	Find	the	minterm	expansion	for	F	(both	decimal	and
algebraic	form).	(b)	Find	the	maxterm	expansion	for	F	(both	decimal	and	algebraic	form).	4.31	Repeat	Problem	4.30	for	F′(A,	B,	C,	D)	=	Σ	m(1,	2,	5,	6,	10,	15).	4.32	Work	parts	(a)	through	(d)	with	the	given	truth	table.	A	0	0	0	0	1	1	1	1	B	0	0	1	1	0	0	1	1	C	0	1	0	1	0	1	0	1	F1	1	X	0	0	0	X	0	1	F2	1	0	1	0	1	0	X	X	F3	0	0	X	1	1	1	X	1	F4	1	0	0	1	1	0	X	X	120	Unit
4	(a)	Find	the	simplest	expression	for	F1,	and	specify	the	values	for	the	don’t-cares	that	lead	to	this	expression.	(b)	Repeat	for	F2.	(c)	Repeat	for	F3.	(d)	Repeat	for	F4.	4.33	Work	Problem	4.5	using	the	following	circuits	and	truth	table.	Assume	that	the	input	combinations	of	ABC	=	011	and	ABC	=	110	will	never	occur.	N1	N2	D	A	B	C	Z	E	F	A	0	0	0	0	1
1	1	1	B	0	0	1	1	0	0	1	1	C	0	1	0	1	0	1	0	1	D	1	0	0	0	0	0	0	1	E	1	1	0	0	1	0	0	0	F	0	0	1	0	0	1	1	1	4.34	Work	Problem	4.7	for	the	following	logic	functions:	(a)	G1(A,	B,	C)	is	1	iff	all	the	coins	landed	on	the	same	side	(heads	or	tails).	(b)	G2(A,	B,	C)	is	1	iff	the	second	coin	landed	on	the	same	side	as	the	first	coin.	4.35	A	combinational	circuit	has	four	inputs	(A,
B,	C,	D)	and	three	outputs	(X,	Y,	Z).	XYZ	represents	a	binary	number	whose	value	equals	the	number	of	1’s	at	the	input.	For	example	if	ABCD	=	1011,	XYZ	=	011.	(a)	Find	the	minterm	expansions	for	X,	Y,	and	Z.	(b)	Find	the	maxterm	expansions	for	Y	and	Z.	4.36	A	combinational	circuit	has	four	inputs	(A,	B,	C,	D)	and	four	outputs	(W,	X,	Y,	Z).	WXYZ
represents	an	excess-3	coded	number	whose	value	equals	the	number	of	1’s	at	the	input.	For	example,	if	ABCD	=	1101,	WXYZ	=	0110.	(a)	Find	the	minterm	expansions	for	X,	Y,	and	Z.	(b)	Find	the	maxterm	expansions	for	Y	and	Z.	4.37	A	combinational	circuit	has	four	inputs	(A,	B,	C,	D),	which	represent	a	binarycoded-decimal	digit.	The	circuit	has	two
groups	of	four	outputs—S,	T,	U,	V,	and	W,	X,	Y,	Z.	Each	group	represents	a	BCD	digit.	The	output	digits	represent	a	decimal	number	which	is	five	times	the	input	number.	For	example,	if	ABCD	=	0111,	the	outputs	are	0011	0101.	Assume	that	invalid	BCD	digits	do	not	occur	as	inputs.	(a)	Construct	the	truth	table.	(b)	Write	down	the	minimum
expressions	for	the	outputs	by	inspection	of	the	truth	table.	(Hint:	Try	to	match	output	columns	in	the	table	with	input	columns.)	4.38	Work	Problem	4.37	where	the	BCD	outputs	represent	a	decimal	number	that	is	1	more	than	four	times	the	input	number.	For	example,	if	ABCD	=	0011,	the	outputs	are	0001	0011.	Applications	of	Boolean	Algebra
Minterm	and	Maxterm	Expansions	121	4.39	Design	a	circuit	which	will	add	a	4-bit	binary	number	to	a	5-bit	binary	number.	Use	five	full	adders.	Assume	negative	numbers	are	represented	in	2’s	complement.	(Hint:	How	do	you	make	a	4-bit	binary	number	into	a	5-bit	binary	number,	without	making	a	negative	number	positive	or	a	positive	number
negative?	Try	writing	down	the	representation	for	–3	as	a	3-bit	2’s	complement	number,	a	4-bit	2’s	complement	number,	and	a	5-bit	2’s	complement	number.	Recall	that	one	way	to	find	the	2’s	complement	of	a	binary	number	is	to	complement	all	bits	to	the	left	of	the	first	1.)	4.40	A	half	adder	is	a	circuit	that	adds	two	bits	to	give	a	sum	and	a	carry.
Give	the	truth	table	for	a	half	adder,	and	design	the	circuit	using	only	two	gates.	Then	design	a	circuit	which	will	find	the	2’s	complement	of	a	4-bit	binary	number.	Use	four	half	adders	and	any	additional	gates.	(Hint:	Recall	that	one	way	to	find	the	2’s	complement	of	a	binary	number	is	to	complement	all	bits,	and	then	add	1.)	4.41	(a)	Write	the
switching	function	f(x,	y)	=	x	+	y	as	a	sum	of	minterms	and	as	a	product	of	maxterms.	(b)	Consider	the	Boolean	algebra	of	four	elements	5	0,	1,	a,	b	6	specified	by	the	following	operation	tables	and	the	Boolean	function	f(x,	y)	=	ax	+	by	where	a	and	b	are	two	of	the	elements	in	the	Boolean	algebra.	Write	f(x,	y)	in	a	sum-ofminterms	form.	(c)	Write	the
Boolean	function	of	part	(b)	in	a	product-of-maxterms	form.	(d)	Give	a	table	of	combinations	for	the	Boolean	function	of	part	(b).	(Note:	The	table	of	combinations	has	16	rows,	not	just	4.)	(e)	Which	four	rows	of	the	table	of	combinations	completely	specify	the	function	of	part	(b)?	Verify	your	answer.	0	1	a	b	′	1	0	b	a	+	0	1	a	b	0	0	1	a	b	1	1	1	1	1	a	a	1	a	1
b	b	1	1	b	·	0	1	a	b	0	0	0	0	0	1	0	1	a	b	a	0	a	a	0	b	0	b	0	b	4.42	(a)	If	m1	and	m2	are	minterms	of	n	variables,	prove	that	m1	+	m2	=	m1	⊕	m2.	(b)	Prove	that	any	switching	function	can	be	written	as	the	exclusive	OR	sum	of		products	where	each	product	does	not	contain	a	complemented	literal.	(Hint:	Start	with	the	function	written	as	a	sum	of	minterms
and	use	part	(a).)	4.43	(a)	Show	that	the	full	adder	of	Figure	4-5	can	be	implemented	using	two	2-input	exclusive	OR	gates	and	three	2-input	NAND	gates.	(Hint:	Rewrite	Equation	(4-2)	in	terms	of	X	⊕	Y.)	(b)	Compare	the	maximum	addition	time	of	the	ripple-carry	adder	of	Figure	4-3	using	the	full	adder	of	part	(a)	versus	the	full	adder	of	Figure	4-5
assuming	the	same	gate	types	are	used	in	both.	4.44	Show	that	a	full	subtractor	can	be	implemented	using	two	2-input	exclusive	OR	gates,	one	inverter,	and	three	2-input	NOR	gates.	(Hint:	Write	the	borrow	out	equation	in	product-of-sums	form.)	122	Unit	4	4.45	The	full	adder	of	Figure	4-5	is	modified	by	adding	two	control	inputs,	E1	and	E0,	and
implemented	as	shown	in	the	figure	below.	(a)	For	each	combination	of	values	for	E1	and	E0,	give	the	algebraic	expression	for	the	outputs	of	the	full	adder.	(b)	Assume	this	modified	full	adder	is	used	in	the	parallel	adder	of	Figure	4-3.	For	each	combination	of	values	for	E1	and	E0,	specify	the	function	(Add,	Exclusive	OR,	etc.)	performed	by	the
parallel	adder.	E1	E0	ai	bi	ai	G1	si	bi	E1′	ci	G2	E0	ai	bi	ci	ci+1	bi	ci	4.46	Redo	Problem	4.45	if	gates	G1	and	G2	are	NAND	gates	rather	than	AND	gates.	4.47	Redo	Problem	4.45	if	gates	G1	and	G2	are	NOR	gates	rather	than	AND	gates	and	an	inverter	is	inserted	in	the	ci	input	of	G2.	4.48	Redo	Problem	4.45	if	gates	G1	and	G2	are	OR	gates	rather	than
AND	gates	and	an	inverter	is	inserted	in	the	ci	input	of	G2.	UNIT	Karnaugh	Maps	5	Objectives	1.	Given	a	function	(completely	or	incompletely	specified)	of	three	to	five	variables,	plot	it	on	a	Karnaugh	map.	The	function	may	be	given	in	minterm,	maxterm,	or	algebraic	form.	2.	Determine	the	essential	prime	implicants	of	a	function	from	a	map.	3.
Obtain	the	minimum	sum-of-products	or	minimum	product-of-sums	form	of	a	function	from	the	map.	4.	Determine	all	of	the	prime	implicants	of	a	function	from	a	map.	5.	Understand	the	relation	between	operations	performed	using	the	map	and	the	corresponding	algebraic	operations.	123	124	Unit	5	Study	Guide	In	this	unit	we	will	study	the
Karnaugh	(pronounced	“car-no”)	map.	Just	about	any	type	of	algebraic	manipulation	we	have	done	so	far	can	be	facilitated	by	using	the	map,	provided	the	number	of	variables	is	small.	1.	Study	Section	5.1,	Minimum	Forms	of	Switching	Functions.	(a)	Define	a	minimum	sum	of	products.	(b)	Define	a	minimum	product	of	sums.	2.	Study	Section	5.2,	Two-
and	Three-Variable	Karnaugh	Maps.	(a)	Plot	the	given	truth	table	on	the	map.	Then,	loop	two	pairs	of	1’s	on	the	map	and	write	the	simplified	form	of	F.	PQ	00	01	10	11	F	1	1	0	1	P	0	Q	1	0	1	F=	F	Now	simplify	F	algebraically	and	verify	that	your	answer	is	correct.	(b)	F(a,	b,	c)	is	plotted	below.	Find	the	truth	table	for	F.	a	0	1	00	0	1	01	1	1	11	0	1	10	1	0
bc	F	abc	000	001	010	011	100	101	110	111	F	Karnaugh	Maps	125	(c)	Plot	the	following	functions	on	the	given	Karnaugh	maps:	F1(R,	S,	T)	=	Σ	m(0,	1,	5,	6)	F2(R,	S,	T)	=	Π	M(2,	3,	4,	7)	0	1	0	00	00	01	01	11	11	10	10	1	Why	are	the	two	maps	the	same?	(d)	Plot	the	following	function	on	the	given	map:	f(x,	y,	z)	=	z′	+	x′z	+	yz	Do	not	make	a	minterm
expansion	or	a	truth	table	before	plotting.	x	yz	0	1	00	01	11	10	(e)	For	a	three-variable	map,	which	squares	are	“adjacent”	to	square	2?	_____________	(f)	What	theorem	is	used	when	two	terms	in	adjacent	squares	are	combined?	(g)	What	law	of	Boolean	algebra	justifies	using	a	given	1	on	a	map	in	two	or	more	loops?	126	Unit	5	(h)	Each	of	the	following
solutions	is	not	minimum.	a	a	0	bc	1	00	1	01	1	11	1	0	bc	f	=	ab′	+	abc	10	1	00	1	01	1	11	1	1	10	1	1	g	=	a′	+	ab	In	each	case,	change	the	looping	on	the	map	so	that	the	minimum	solution	is	obtained.	(i)	Work	Problem	5.3.	(j)	Find	two	different	minimum	sum-of-products	expressions	for	the	function	G,	which	is	plotted	below.	a	bc	00	a	0	1	1	1	00	1	01	1	11
1	10	1	01	11	1	10	1	bc	0	1	1	1	1	G	3.	G=	1	G=	G	Study	Section	5.3,	Four-Variable	Karnaugh	Maps.	(a)	Note	the	locations	of	the	minterms	on	three-	and	four-variable	maps	(Figures	5-3(b)	and	5-10).	Memorize	this	ordering.	This	will	save	you	a	lot	of	time	when	you	are	plotting	Karnaugh	maps.	This	ordering	is	valid	only	for	the	order	of	the	variables
given.	If	we	label	the	maps	as	shown	below,	fill	in	the	locations	of	the	minterms:	BC	00	A	01	11	10	CD	00	AB	0	00	1	01	11	10	01	11	10	Karnaugh	Maps	127	(b)	Given	the	following	map,	write	the	minterm	and	maxterm	expansions	for	F	in	decimal	form:	ab	00	cd	01	00	01	1	11	10	1	1	1	1	1	11	F=	1	1	10	F=	(c)	Plot	the	following	functions	on	the	given
maps:	(1)	f	(w,	x,	y,	z)	=	Σ	m(0,	1,	2,	5,	7,	8,	9,	10,	13,	14)	(2)	f	(w,	x,	y,	z)	=	x′z′	+	y′z	+	w′xz	+	wyz′	wx	00	yz	01	11	10	wx	00	yz	00	00	01	01	11	11	10	10	01	11	10	Your	answers	to	(1)	and	(2)	should	be	the	same.	(d)	For	a	four-variable	map,	which	squares	are	adjacent	to	square	14?	________	To	square	8?	_________	(e)	When	we	combine	two	adjacent	1’s
on	a	map,	this	corresponds	to	applying	the	theorem	xy′	+	xy	=	x	to	eliminate	the	variable	in	which	the	two	terms	differ.	Thus,	looping	the	two	1’s	as	indicated	on	the	following	map	is	equivalent	to	combining	the	corresponding	minterms	algebraically:	ab	cd	00	01	10	1	00	01	1	11	1	10	11	1	a′b′c′d	+	ab′c′d	=	b′c′d	[The	term	b′c′d	can	be	read	directly	from
the	map	because	it	spans	the	first	and	last	columns	(b′)	and	because	it	is	in	the	second	row	(c′d).]	1	1	128	Unit	5	Loop	two	other	pairs	of	adjacent	1’s	on	this	map	and	state	the	algebraic	equivalent	of	looping	these	terms.	Now	read	the	loops	directly	off	the	map	and	check	your	algebra.	(f)	When	we	combine	four	adjacent	1’s	on	a	map	(either	four	in	a
line	or	four	in	a	square)	this	is	equivalent	to	applying	xy	+	xy′	=	x	three	times:	ab	00	cd	01	00	1	01	1	11	10	11	1	1	1	10	1	1	1	a′b′cd	+	a′b′cd′	+	ab′cd	+	ab′cd′	=	a′b′c	+	ab′c	=	b′c	Loop	the	other	four	1’s	on	the	map	and	state	the	algebraic	equivalent.	(g)	For	each	of	the	following	maps,	loop	a	minimum	number	of	terms	which	will	cover	all	of	the	1’s.	ab
ab	01	11	00	1	1	01	1	1	cd	11	10	00	1	10	cd	00	11	1	10	1	00	1	01	1	11	1	1	10	1	f1	01	1	1	1	1	f2	(For	each	part	you	should	have	looped	two	groups	of	four	1’s	and	two	groups	of	two	1’s).	Write	down	the	minimum	sum-of-products	expression	for	f1	and	f2	from	these	maps.	f1	=	__	f2	=
__	(h)	Why	is	it	not	possible	to	combine	three	or	six	minterms	together	rather	than	just	two,	four,	eight,	etc.?	Karnaugh	Maps	129	(i)	Note	the	procedure	for	deriving	the	minimum	product	of	sums	from	the	map.	You	will	probably	make	fewer	mistakes	if	you	write	down	f	′	as	a	sum	of	products	first	and
then	complement	it,	as	illustrated	by	the	example	in	Figure	5-14.	(j)	Work	Problems	5.4	and	5.5.	4.	Study	Section	5.4,	Determination	of	Minimum	Expressions	Using	Essential	Prime	Implicants.	(a)	For	the	map	of	Figure	5-15,	list	three	implicants	of	F	other	than	those	which	are	labeled.	For	the	same	map,	is	ac′d′	a	prime	implicant	of	F?	Why	or	why
not?	(b)	For	the	given	map,	are	any	of	the	circled	terms	prime	implicants?	Why	or	why	not?	5.	AB	CD	00	01	11	10	1	00	01	1	1	11	1	1	10	1	1	1	Study	Figure	5-18	carefully	and	then	answer	the	following	questions	for	the	given	map:	(a)	How	many	1’s	are	adjacent	to	m0?	(b)	Are	all	these	1’s	covered	by	a	single	prime	implicant?	AB	00	CD	00	01	1	1	0	(c)
From	your	answer	to	(b),	can	you	determine	whether	B′C′	is	essential?	01	(d)	How	many	1’s	are	adjacent	to	m9?	11	(e)	Are	all	of	these	1’s	covered	by	a	single	prime	implicant?	10	11	10	1	4	1	8	1	1	1	9	1	3	1	7	1	2	1	6	10	(f)	From	your	answer	to	(e),	is	B′C′	essential?	(g)	How	many	1’s	are	adjacent	to	m7?	(h)	Why	is	A′C	essential?	(i)	Find	two	other
essential	prime	implicants	and	tell	which	minterm	makes	them	essential.	130	Unit	5	6.	(a)	How	do	you	determine	if	a	prime	implicant	is	essential	using	a	Karnaugh	map?	(b)	For	the	following	map,	why	is	A′B′not	essential?	Why	is	BD′	essential?	Is	A′D′	essential?	Why?	Is	BC′	essential?	Why?	Is	B′CD	essential?	Why?	Find	the	minimum	sum	of	products.
(c)	Work	Programmed	Exercise	5.1.	(d)	List	all	1’s	and	X’s	that	are	adjacent	to	10.	AB	00	CD	01	11	10	00	10	14	112	8	01	X1	15	X13	9	11	3	X7	115	111	10	2	6	X14	10	Why	is	A′C′	an	essential	prime	implicant?	List	all	1’s	and	X’s	adjacent	to	115.	AB	00	CD	01	11	00	1	1	1	01	1	1	1	11	1	10	1	10	1	1	1	Karnaugh	Maps	131	Based	on	this	list,	why	can	you	not
find	an	essential	prime	implicant	that	covers	115?	Does	this	mean	that	there	is	no	essential	prime	implicant	that	covers	115?	What	essential	prime	implicant	covers	111?	Can	you	find	an	essential	prime	implicant	that	covers	112?	Explain.	Find	two	prime	implicants	that	cover	112.	Give	two	minimum	expressions	for	F.	(e)	Work	Problem	5.6.	(f)	If	you
have	a	copy	of	the	LogicAid	program	available,	use	the	Karnaugh	map	tutorial	mode	to	help	you	learn	to	find	minimum	solutions	from	Karnaugh	maps.	This	program	will	check	your	work	at	each	step	to	make	sure	that	you	loop	the	terms	in	the	correct	order.	It	also	will	check	your	final	answer.	Work	Problem	5.7	using	the	Karnaugh	map	tutor.	7.	(a)	In
Example	4,	page	107,	we	derived	the	following	function:	Z	=	Σ	m(0,	3,	6,	9)	+	Σ	d(10,	11,	12,	13,	14,	15)	Plot	Z	on	the	given	map	using	X’s	to	represent	don’t-care	terms.	AB	00	CD	01	11	10	00	01	11	10	Z	(b)	Show	that	the	minimum	sum	of	products	is	Z	=	A′B′C′D′	+	B′CD	+	AD	+	BCD′	Which	four	don’t-care	minterms	were	assigned	the	value	1	when
forming	your	solution?	132	Unit	5	(c)	Show	that	the	minimum	product	of	sums	for	Z	is	Z	=	(B′	+	C)(B′	+	D′)(A′	+	D)(A	+	C	+	D′)(B	+	C′	+	D)	Which	one	don’t-care	term	of	Z	was	assigned	the	value	1	when	forming	your	solution?	(d)	Work	Problem	5.8.	8.	Study	Section	5.5,	Five-Variable	Karnaugh	Maps.	(a)	The	figure	below	shows	a	three-dimensional
five-variable	map.	Plot	the	1’s	and	loops	on	the	corresponding	two-dimensional	map,	and	give	the	minimum	sum-of-products	expression	for	the	function.	BC	00	DE	00	A=	1	01	1	1	01	11	BC	DE	10	1	1	00	01	11	10	00	11	10	01	1	A	1	0	1	11	A=	0	1	1	10	F=	(b)	On	a	five-variable	map	(Figure	5-21),	what	are	the	five	minterms	adjacent	to	minterm	24?	(c)
Work	through	all	of	the	examples	in	this	section	carefully	and	make	sure	that	you	understand	all	of	the	steps.	(d)	Two	minimum	solutions	are	given	for	Figure	5-24.	There	is	a	third	minimum	sum-of-products	solution.	What	is	it?	(e)	Work	Programmed	Exercise	5.2.	Karnaugh	Maps	(f)	BC	DE	00	01	16	X	00	11	20	4	21	12	29	8	25	1	X	01	1	1	19	5	23	13	31
1	1	3	18	1	7	22	1	X	15	30	1	2	9	27	1	X	11	10	24	1	0	A	1	0	10	28	X	17	133	X	6	11	26	X	14	10	Find	the	three	1’s	and	X’s	adjacent	to	118.	Can	these	all	be	looped	with	a	single	loop?	Find	the	1’s	and	X’s	adjacent	to	124.	Loop	the	essential	prime	implicant	that	covers	124.	Find	the	1’s	and	X’s	adjacent	to	13.	Loop	the	essential	prime	implicant	that	covers
13.	Can	you	find	an	essential	prime	implicant	that	covers	122?	Explain.	Find	and	loop	two	more	essential	prime	implicants.	Find	three	ways	to	cover	the	remaining	1	on	the	map	and	give	the	corresponding	minimum	solutions.	(g)	If	you	have	the	LogicAid	program	available,	work	Problem	5.9,	using	the	Karnaugh	map	tutor.	9.	Study	Section	5.6,	Other
Uses	of	Karnaugh	Maps.	Refer	to	Figure	5-8	and	note	that	a	consensus	term	exists	if	there	are	two	adjacent,	but	nonoverlapping	prime	implicants.	Observe	how	this	principle	is	applied	in	Figure	5-26.	10.	Work	Problems	5.10,	5.11,	5.12,	and	5.13.	When	deriving	the	minimum	solution	from	the	map,	always	write	down	the	essential	prime	implicants
first.	If	you	do	not,	it	is	quite	likely	that	you	will	not	get	the	minimum	solution.	In	addition,	make	sure	you	can	find	all	of	the	prime	implicants	from	the	map	(see	Problem	5.10(b)).	11.	Review	the	objectives.	Karnaugh	Maps	Switching	functions	can	generally	be	simplified	by	using	the	algebraic	techniques	described	in	Unit	3.	However,	two	problems
arise	when	algebraic	procedures	are	used:	1.	2.	The	procedures	are	difficult	to	apply	in	a	systematic	way.	It	is	difficult	to	tell	when	you	have	arrived	at	a	minimum	solution.	The	Karnaugh	map	method	studied	in	this	unit	and	the	Quine-McCluskey	procedure	studied	in	Unit	6	overcome	these	difficulties	by	providing	systematic	methods	for	simplifying
switching	functions.	The	Karnaugh	map	is	an	especially	useful	tool	for	simplifying	and	manipulating	switching	functions	of	three	or	four	variables,	but	it	can	be	extended	to	functions	of	five	or	more	variables.	Generally,	you	will	find	the	Karnaugh	map	method	is	faster	and	easier	to	apply	than	other	simplification	methods.	5.1	Minimum	Forms	of
Switching	Functions	When	a	function	is	realized	using	AND	and	OR	gates,	the	cost	of	realizing	the	function	is	directly	related	to	the	number	of	gates	and	gate	inputs	used.	The	Karnaugh	map	techniques	developed	in	this	unit	lead	directly	to	minimum	cost	two-level	circuits	composed	of	AND	and	OR	gates.	An	expression	consisting	of	a	sum	of	product
terms	corresponds	directly	to	a	two-level	circuit	composed	of	a	group	of	AND	gates	feeding	a	single	OR	gate	(see	Figure	2-5).	Similarly,	a	product-of-sums	expression	corresponds	to	a	two-level	circuit	composed	of	OR	gates	feeding	a	single	AND	gate	(see	Figure	2-6).	Therefore,	to	find	minimum	cost	two-level	AND-OR	gate	circuits,	we	must	find
minimum	expressions	in	sum-of-products	or	product-ofsums	form.	A	minimum	sum-of-products	expression	for	a	function	is	defined	as	a	sum	of	product	terms	which	(a)	has	a	minimum	number	of	terms	and	(b)	of	all	those	expressions	which	have	the	same	minimum	number	of	terms,	has	a	minimum	number	of	literals.	The	minimum	sum	of	products
corresponds	directly	to	a	minimum	two-level	gate	circuit	which	has	(a)	a	minimum	number	of	gates	and	(b)	a	minimum	number	134	Karnaugh	Maps	135	of	gate	inputs.	Unlike	the	minterm	expansion	for	a	function,	the	minimum	sum	of	products	is	not	necessarily	unique;	that	is,	a	given	function	may	have	two	different	minimum	sum-of-products	forms,
each	with	the	same	number	of	terms	and	the	same	number	of	literals.	Given	a	minterm	expansion,	the	minimum	sum-of-products	form	can	often	be	obtained	by	the	following	procedure:	1.	2.	Combine	terms	by	using	the	uniting	theorem	XY′	+	XY	=	X.	Do	this	repeatedly	to	eliminate	as	many	literals	as	possible.	A	given	term	may	be	used	more	than	once
because	X	+	X	=	X.	Eliminate	redundant	terms	by	using	the	consensus	theorem	or	other	theorems.	Unfortunately,	the	result	of	this	procedure	may	depend	on	the	order	in	which	terms	are	combined	or	eliminated	so	that	the	final	expression	obtained	is	not	necessarily	minimum.	Example	Find	a	minimum	sum-of-products	expression	for	F	Σ	m	(0,	1,	2,	5,
6,	7)	F(a,	b,	c)	a′b′c	a′b′c′	a′b′	a′bc′	b′c	ab′c	bc′	abc′	abc	ab	(5-1)	None	of	the	terms	in	the	above	expression	can	be	eliminated	by	consensus.	However,	combining	terms	in	a	different	way	leads	directly	to	a	minimum	sum	of	products:	F	a′b′c	a′b′c′	a′b′	a′bc′	ab′c	bc′	abc′	ac	abc	(5-2)	If	the	uniting	theorem	is	applied	to	all	possible	pairs	of	minterms,	six	two-
literal	products	are	obtained:	a′b′,	a′c′,	b′c,	bc′,	ac,	ab.	Then,	the	consensus	theorem	can	be	applied	to	obtain	a	second	minimal	solution:	a′c′	+	b′c	+	ab	(5-3)	A	minimum	product-of-sums	expression	for	a	function	is	defined	as	a	product	of	sum	terms	which	(a)	has	a	minimum	number	of	terms,	and	(b)	of	all	those	expressions	which	have	the	same	number
of	terms,	has	a	minimum	number	of	literals.	Unlike	the	maxterm	expansion,	the	minimum	product-of-sums	form	of	a	function	is	not	necessarily	unique.	Given	a	maxterm	expansion,	the	minimum	product	of	sums	can	often	be	obtained	by	a	procedure	similar	to	that	used	in	the	minimum	sumof-products	case,	except	that	the	uniting	theorem	(X	+	Y)(X	+
Y′)	=	X	is	used	to	combine	terms.	136	Unit	5	Example	(A	B′	C	D′)(A	B′	C′	(A	B′	D′)	(A	B′	D′)	(A	B′	D′)(A	D′)(C′	B′	(A	(A	D)	C′	B′	B′	D)(A′	C′)	C′)	B′	(B′	C′	D)(A	C′	D)	(C′	D)	B	(B	C′	C′	D)(A′	B	C′	D)	D)	eliminate	by	consensus	(5-4)	The	uniting	theorem	XY′	+	XY	=	X	can	be	applied	to	minterms	and	products	where	the	minterms	and	products	are	represented	in
algebraic	notation	or	binary	notation.	The	first	four-variable	example	below	illustrates	this	for	minterms	and	the	second	for	products	containing	three	literals.	The	dash	indicates	a	missing	variable.	ab′cd′	+	ab′cd	=	ab′c	1	0	1	0	+	1	0	1	1	=	101–	ab′c	+	abc	=	ac	1	0	1–	+	111–	=	1–1–	Note	that	minterms	only	combine	if	they	differ	in	one	variable,	and
products	only	combine	if	they	have	dashes	in	the	same	position	(same	missing	variables)	and	differ	in	one	other	variable.	The	examples	below	do	not	combine.	ab′cd′	+	ab′c′d	(will	not	combine)	10	10	+	1001	ab′c	+	abd	(will	not	combine)	101–	+	11–1	The	Karnaugh	maps	introduced	next	arrange	the	minterms	of	a	function	so	that	it	is	easy	to	recognize
visually	when	the	simplification	theorem	applies	to	two	minterms,	two	products	with	one	missing	variable,	two	products	with	two	missing	variables,	etc.	5.2	Two-	and	Three-Variable	Karnaugh	Maps	Just	like	a	truth	table,	the	Karnaugh	map	of	a	function	specifies	the	value	of	the	function	for	every	combination	of	values	of	the	independent	variables.	A
two-variable	Karnaugh	map	is	shown.	The	values	of	one	variable	are	listed	across	the	top	of	the	map,	and	the	values	of	the	other	variable	are	listed	on	the	left	side.	Each	square	of	the	map	corresponds	to	a	pair	of	values	for	A	and	B	as	indicated.	Karnaugh	Maps	137	A	0	B	A	=	0,	B	=	0	A	=	0,	B	=	1	1	0	A	=	1,	B	=	0	1	A	=	1,	B	=	1	Figure	5-1	shows	the
truth	table	for	a	function	F	and	the	corresponding	Karnaugh	map.	Note	that	the	value	of	F	for	A	=	B	=	0	is	plotted	in	the	upper	left	square,	and	the	other	map	entries	are	plotted	in	a	similar	way	in	Figure	5-1(b).	Each	1	on	the	map	corresponds	to	a	minterm	of	F.	We	can	read	the	minterms	from	the	map	just	like	we	can	read	them	from	the	truth	table.
A	1	in	square	00	of	Figure	5-1(c)	indicates	that	A′B′	is	a	minterm	of	F.	Similarly,	a	1	in	square	01	indicates	that	A′B	is	a	minterm.	Minterms	in	adjacent	squares	of	the	map	can	be	combined	since	they	differ	in	only	one	variable.	Thus,	A′B′	and	A′B	combine	to	form	A′,	and	this	is	indicated	by	looping	the	corresponding	1’s	on	the	map	in	Figure	5-1(d).
FIGURE	5-1	©	Cengage	Learning	2014	A	B	AB	F	0	1	0	1	1	1	0	0	0	0	1	1	0	A	0	1	1	0	B	0	A	0	1	1	0	1	0	1	0	1	0	1	1	0	A′B′	+	A′B	=	A′	A′B′	1	0	B	1	1	0	A′B	F	=	A′B′	+	A′B	(b)	(a)	F	=	A′	(c)	(d)	Figure	5-2	shows	a	three-variable	truth	table	and	the	corresponding	Karnaugh	map	(see	Figure	5-27	for	an	alternative	way	of	labeling	maps).	The	value	of	one	variable
(A)	is	listed	across	the	top	of	the	map,	and	the	values	of	the	other	two	variables	(B,	C)	are	listed	along	the	side	of	the	map.	The	rows	are	labeled	in	the	sequence	00,	01,	11,	10	so	that	values	in	adjacent	rows	differ	in	only	one	variable.	For	each	combination	of	values	of	the	variables,	the	value	of	F	is	read	from	the	truth	table	and	plotted	in	the
appropriate	map	square.	For	example,	for	the	input	combination	ABC	=	001,	the	value	F	=	0	is	plotted	in	the	square	for	which	A	=	0	and	BC	=	01.	For	the	combination	ABC	=	110,	F	=	1	is	plotted	in	the	A	=	1,	BC	=	10	square.	FIGURE	5-2	Truth	Table	and	Karnaugh	Map	for	Three-Variable	Function	©	Cengage	Learning	2014	ABC	F	0	0	0	0	1	1	1	1	0	0
1	1	1	0	1	0	0	0	1	1	0	0	1	1	0	1	0	1	0	1	0	1	(a)	A	BC	0	1	00	0	1	01	0	0	11	1	0	10	1	1	ABC	=	001,	F	=	0	F	(b)	ABC	=	110,	F	=	1	138	Unit	5	Figure	5-3	shows	the	location	of	the	minterms	on	a	three-variable	map.	Minterms	in	adjacent	squares	of	the	map	differ	in	only	one	variable	and	therefore	can	be	combined	using	the	uniting	theorem	XY′	+	XY	=	X.	For
example,	minterm	011	(a′bc)	is	adjacent	to	the	three	minterms	with	which	it	can	be	combined—001	(a′b′c),	010	(a′bc′),	and	111	(abc).	In	addition	to	squares	which	are	physically	adjacent,	the	top	and	bottom	rows	of	the	map	are	defined	to	be	adjacent	because	the	corresponding	minterms	in	these	rows	differ	in	only	one	variable.	Thus	000	and	010	are
adjacent,	and	so	are	100	and	110.	FIGURE	5-3	Location	of	Minterms	on	a	Three-Variable	Karnaugh	Map	a	a	0	1	00	000	100	01	001	101	11	011	111	10	010	110	bc	0	1	00	0	4	01	1	5	11	3	7	10	2	6	bc	©	Cengage	Learning	2014	100	is	adjacent	to	110	(a)	Binary	notation	(b)	Decimal	notation	Given	the	minterm	expansion	of	a	function,	it	can	be	plotted	on	a
map	by	placing	1’s	in	the	squares	which	correspond	to	minterms	of	the	function	and	0’s	in	the	remaining	squares	(the	0’s	may	be	omitted	if	desired).	Figure	5-4	shows	the	plot	of	F(a,	b,	c)	=	m1	+	m3	+	m5.	If	F	is	given	as	a	maxterm	expansion,	the	map	is	plotted	by	placing	0’s	in	the	squares	which	correspond	to	the	maxterms	and	then	by	filling	in	the
remaining	squares	with	1’s.	Thus,	F(a,	b,	c)	=	M0M2M4M6M7	gives	the	same	map	as	Figure	5-4.	FIGURE	5-4	Karnaugh	Map	of	F(a,	b,	c)	=	Σ	m(1,	3,	5)	=	Π	M(0,	2,	4,	6,	7)	©	Cengage	Learning	2014	a	bc	00	0	1	0	0	0	01	1	4	1	1	11	1	5	0	3	10	0	7	0	2	6	Figure	5-5	illustrates	how	product	terms	can	be	plotted	on	Karnaugh	maps.	To	plot	the	term	b,	1’s
are	entered	in	the	four	squares	of	the	map	where	b	=	1.	The	term	bc′	is	1	when	b	=	1	and	c	=	0,	so	1’s	are	entered	in	the	two	squares	in	the	bc	=	10	row.	The	term	ac′	is	1	when	a	=	1	and	c	=	0,	so	1’s	are	entered	in	the	a	=	1	column	in	the	rows	where	c	=	0.	Karnaugh	Maps	FIGURE	5-5	Karnaugh	Maps	for	Product	Terms	a	bc	a	a	0	1	bc	0	1	0	bc	00	00
00	01	01	01	11	1	139	a	=	1	in	this	column	1	©	Cengage	Learning	2014	b	=	1	in	these	rows	11	1	1	11	10	1	1	10	1	b	1	c	=	0	in	these	rows	1	10	ac′	bc′	If	a	function	is	given	in	algebraic	form,	it	is	unnecessary	to	expand	it	to	minterm	form	before	plotting	it	on	a	map.	If	the	algebraic	expression	is	converted	to	sum-ofproducts	form,	then	each	product	term
can	be	plotted	directly	as	a	group	of	1’s	on	the	map.	For	example,	given	that	f	(a,	b,	c)	=	abc′	+	b′c	+	a′	we	would	plot	the	map	as	follows:	a	bc	1.	The	term	abc′	is	1	when	a	=	1	and	bc	=	10,	so	we	place	a	1	in	the	square	which	corresponds	to	the	a	=	1	column	and	the	bc	=	10	row	of	the	map.	2.	The	term	b′c	is	1	when	bc	=	01,	so	we	place	1’s	in	both
squares	of	the	bc	=	01	row	of	the	map.	3.	The	term	a′	is	1	when	a	=	0,	so	we	place	1’s	in	all	the	squares	of	the	a	=	0	column	of	the	map.	(Note:	Since	there	already	is	a	1	in	the	abc	=	001	square,	we	do	not	have	to	place	a	second	1	there	because	x	+	x	=	x.)	0	00	1	01	1	11	1	10	1	1	1	1	abc′	Figure	5-6	illustrates	how	a	simplified	expression	for	a	function
can	be	derived	using	a	Karnaugh	map.	The	function	to	be	simplified	is	first	plotted	on	a	Karnaugh	map	in	Figure	5-6(a).	Terms	in	adjacent	squares	on	the	map	differ	in	only	one	variable	and	can	be	combined	using	the	uniting	theorem	XY′	+	XY	=	X.	Thus	a′b′c	and	a′bc	combine	to	form	a′c,	and	a′b′c	and	ab′c	combine	to	form	b′c,	as	shown	in	Figure	5-
6(b).	A	loop	around	a	group	of	minterms	indicates	that	these	terms	have	been	combined.	The	looped	terms	can	be	read	directly	off	the	map.	Thus,	for	Figure	5-6(b),	term	T1	is	in	the	a	=	0	(a′)	column,	and	it	spans	the	rows	where	c	=	1,	so	T1	=	a′c.	Note	that	b	has	been	eliminated	because	the	two	minterms	in	T1	differ	in	the	variable	b.	Similarly,	the
term	T2	is	in	the	bc	=	01	row	so	T2	=	b′c,	and	a	has	been	eliminated	because	T2	spans	the	a	=	0	and	a	=	1	columns.	Thus,	the	minimum	sum-of-products	form	for	F	is	a′c	+	b′c.	140	Unit	5	FIGURE	5-6	Simplification	of	a	Three-Variable	Function	©	Cengage	Learning	2014	a	a	0	bc	1	bc	00	0	1	1	1	00	01	1	11	1	T1	01	=	a′b′c	+	a′bc	=	a′c	11	1	10	T2	=	a′b′c
+	ab′c	=	b′c	1	10	F	=	Σ	m(1,	3,	5)	F	=	a′c	+	b′c	(b)	Simplified	form	of	F	(a)	Plot	of	minterms	The	map	for	the	complement	of	F	(Figure	5-7)	is	formed	by	replacing	0’s	with	1’s	and	1’s	with	0’s	on	the	map	of	F.	To	simplify	F′,	note	that	the	terms	in	the	top	row	combine	to	form	b′c′,	and	the	terms	in	the	bottom	row	combine	to	form	bc′.	Because	b′c′	and	bc′
differ	in	only	one	variable,	the	top	and	bottom	rows	can	then	be	combined	to	form	a	group	of	four	1’s,	thus	eliminating	two	variables	and	leaving	T1	=	c′.	The	remaining	1	combines,	as	shown,	to	form	T2	=	ab,	so	the	minimum	sum-	of-products	form	for	F′	is	c′	+	ab.	FIGURE	5-7	Complement	of	Map	in	Figure	5-6(a)	a	0	1	00	1	1	01	0	0	11	0	1	10	1	1	bc	©
Cengage	Learning	2014	T1	=	b′c′	+	bc′	=	c′	T2	=	ab	The	Karnaugh	map	can	also	illustrate	the	basic	theorems	of	Boolean	algebra.	Figure	5-8	illustrates	the	consensus	theorem,	XY	+	X′Z	+	YZ	=	XY	+	X′Z.	Note	that	the	consensus	term	(YZ)	is	redundant	because	its	1’s	are	covered	by	the	other	two	terms.	FIGURE	5-8	Karnaugh	Maps	that	Illustrate	the
Consensus	Theorem	x	yz	0	x	yz	1	00	©	Cengage	Learning	2014	1	00	01	1	11	1	yz	(consensus	term)	x′z	10	0	1	1	xy	xy	+	x′z	+	yz	=	xy	+	x′z	01	1	11	1	10	1	1	Karnaugh	Maps	141	If	a	function	has	two	or	more	minimum	sum-of-products	forms,	all	of	these	forms	can	be	determined	from	a	map.	Figure	5-9	shows	the	two	minimum	solutions	for	F	=	Σ	m(0,	1,
2,	5,	6,	7).	FIGURE	5-9	Function	with	Two	Minimum	Forms	a	a	0	bc	00	1	01	1	1	0	bc	00	1	1	01	1	1	11	1	10	1	©	Cengage	Learning	2014	11	10	1	F	=	a′b′	+	bc′	+	ac	1	1	1	1	F	=	a′c′	+	b′c	+	ab	5.3	Four-Variable	Karnaugh	Maps	Figure	5-10	shows	the	location	of	minterms	on	a	four-variable	map.	Each	minterm	is	located	adjacent	to	the	four	terms	with
which	it	can	combine.	For	example,	m5	(0101)	could	combine	with	m1	(0001),	m4	(0100),	m7	(0111),	or	m13	(1101)	because	it	differs	in	only	one	variable	from	each	of	the	other	minterms.	The	definition	of	adjacent	squares	must	be	extended	so	that	not	only	are	top	and	bottom	rows	adjacent	as	in	the	three-variable	map,	but	the	first	and	last
columns	are	also	adjacent.	This	requires	numbering	the	columns	in	the	sequence	00,	01,	11,	10	so	that	minterms	0	and	8,	1	and	9,	etc.,	are	in	adjacent	squares.	FIGURE	5-10	Location	of	Minterms	on	Four-Variable	Karnaugh	Map	©	Cengage	Learning	2014	AB	00	CD	01	11	10	00	0	4	12	8	01	1	5	13	9	11	3	7	15	11	10	2	6	14	10	We	will	now	plot	the
following	four-variable	expression	on	a	Karnaugh	map	(Figure	5-11):	f	(a,	b,	c,	d)	=	acd	+	a′b	+	d′	The	first	term	is	1	when	a	=	c	=	d	=	1,	so	we	place	1’s	in	the	two	squares	which	are	in	the	a	=	1	column	and	cd	=	11	row.	The	term	a′b	is	1	when	ab	=	01,	so	we	place	four	1’s	in	the	ab	=	01	column.	Finally,	d′	is	1	when	d	=	0,	so	we	place	eight	1’s	in	the
two	rows	for	which	d	=	0.	(Duplicate	1’s	are	not	plotted	because	1	+	1	=	1.)	142	Unit	5	FIGURE	5-11	Plot	of	acd	+	a′b	+	d′	ab	cd	00	00	01	11	10	1	1	1	1	©	Cengage	Learning	2014	a′b	01	1	11	1	1	1	1	1	1	d′	1	10	acd	Next,	we	will	simplify	the	functions	f1	and	f2	given	in	Figure	5-12.	Because	the	functions	are	specified	in	minterm	form,	we	can	determine
the	locations	of	the	1’s	on	the	map	by	referring	to	Figure	5-10.	After	plotting	the	maps,	we	can	then	combine	adjacent	groups	of	1’s.	Minterms	can	be	combined	in	groups	of	two,	four,	or	eight	to	eliminate	one,	two,	or	three	variables,	respectively.	In	Figure	5-12(a),	the	pair	of	1’s	in	the	ab	=	00	column	and	also	in	the	d	=	1	rows	represents	a′b′d.	The
group	of	four	1’s	in	the	b	=	1	columns	and	c	=	0	rows	represents	bc′.	FIGURE	5-12	Simplification	of	Four-Variable	Functions	ab	cd	ab	00	00	©	Cengage	Learning	2014	01	1	01	11	1	1	1	1	10	cd	00	bc′	00	01	11	1	10	1	01	a′bd	c	a′b′d	11	1	1	10	ab′cd′	Four	corner	terms	combine	to	give	b′d′	1	11	1	1	1	1	10	1	1	1	1	f1	=	Σ	m(1,	3,	4,	5,	10,	12,	13)	=	bc′	+	a′b′d
+	ab′cd′	f2	=	Σ	m(0,	2,	3,	5,	6,	7,	8,	10,	11,	14,	15)	=	c	+	b′d′	+	a′bd	(a)	(b)	In	Figure	5-12(b),	note	that	the	four	corner	1’s	span	the	b	=	0	columns	and	d	=	0	rows	and,	therefore,	can	be	combined	to	form	the	term	b′d′.	The	group	of	eight	1’s	covers	both	rows	where	c	=	1	and,	therefore,	represents	the	term	c.	The	pair	of	1’s	which	is	looped	on	the	map
represents	the	term	a′bd	because	it	is	in	the	ab	=	01	column	and	spans	the	d	=	1	rows.	The	Karnaugh	map	method	is	easily	extended	to	functions	with	don’t-care	terms.	The	required	minterms	are	indicated	by	1’s	on	the	map,	and	the	don’t-care	minterms	are	indicated	by	X’s.	When	choosing	terms	to	form	the	minimum	sum	of	products,	all	Karnaugh
Maps	143	the	1’s	must	be	covered,	but	the	X’s	are	only	used	if	they	will	simplify	the	resulting	expression.	In	Figure	5-13,	the	only	don’t-care	term	used	in	forming	the	simplified	expression	is	13.	FIGURE	5-13	Simplification	of	an	Incompletely	Specified	Function	©	Cengage	Learning	2014	ab	00	cd	01	11	10	X	00	01	1	1	11	1	1	X	1	X	10	f	=	Σ	m(1,	3,	5,	7,
9)	+	Σ	d(6,	12,	13)	=	a′d	+	c′d	The	use	of	Karnaugh	maps	to	find	a	minimum	sum-of-products	form	for	a	function	has	been	illustrated	in	Figures	5-1,	5-6,	and	5-12.	A	minimum	product	of	sums	can	also	be	obtained	from	the	map.	Because	the	0’s	of	f	are	1’s	of	f	′,	the	minimum	sum	of	products	for	f	′	can	be	determined	by	looping	the	0’s	on	a	map	of	f	.
The	complement	of	the	minimum	sum	of	products	for	f	′	is	then	the	minimum	product	of	sums	for	f	.	The	following	example	illustrates	this	procedure	for	f	=	x′z′	+	wyz	+	w′y′z′	+	x′y	First,	the	1’s	of	f	are	plotted	in	Figure	5-14.	Then,	from	the	0’s,	f	′	=	y′z	+	wxz′	+	w′xy	and	the	minimum	product	of	sums	for	f	is	f	=	(y	+	z′)(w′	+	x′	+	z)(w	+	x′	+	y′)	FIGURE
5-14	©	Cengage	Learning	2014	wx	00	yz	01	11	10	00	1	1	0	1	01	0	0	0	0	11	1	0	1	1	10	1	0	0	1	144	Unit	5	5.4	Determination	of	Minimum	Expressions	Using	Essential	Prime	Implicants	Any	single	1	or	any	group	of	1’s	which	can	be	combined	together	on	a	map	of	the	function	F	represents	a	product	term	which	is	called	an	implicant	of	F	(see	Section	6.1
for	a	formal	definition	of	implicant	and	prime	implicant).	Several	implicants	of	F	are	indicated	in	Figure	5-15.	A	product	term	implicant	is	called	a	prime	implicant	if	it	cannot	be	combined	with	another	term	to	eliminate	a	variable.	In	Figure	5-15,	a′b′c,	a′cd′,	and	ac′	are	prime	implicants	because	they	cannot	be	combined	with	other	terms	to	eliminate	a
variable.	On	the	other	hand,	a′b′c′d′	is	not	a	prime	implicant	because	it	can	be	combined	with	a′b′cd′	or	ab′c′d′.	Neither	abc′,	nor	ab′c′is	a	prime	implicant	because	these	terms	can	be	combined	together	to	form	ac′.	FIGURE	5-15	ab	cd	©	Cengage	Learning	2014	00	00	01	1	11	10	1	1	1	1	a′b′c′d′	01	ac′	ab′c′	abc′	a′b′c	11	1	10	1	1	a′cd′	All	of	the	prime
implicants	of	a	function	can	be	obtained	from	a	Karnaugh	map.	A	single	1	on	a	map	represents	a	prime	implicant	if	it	is	not	adjacent	to	any	other	1’s.	Two	adjacent	1’s	on	a	map	form	a	prime	implicant	if	they	are	not	contained	in	a	group	of	four	1’s;	four	adjacent	1’s	form	a	prime	implicant	if	they	are	not	contained	in	a	group	of	eight	1’s,	etc.	The
minimum	sum-of-products	expression	for	a	function	consists	of	some	(but	not	necessarily	all)	of	the	prime	implicants	of	a	function.	In	other	words,	a	sum-ofproducts	expression	containing	a	term	which	is	not	a	prime	implicant	cannot	be	minimum.	This	is	true	because	if	a	nonprime	term	were	present,	the	expression	could	be	simplified	by	combining
the	nonprime	term	with	additional	minterms.	In	order	to	find	the	minimum	sum	of	products	from	a	map,	we	must	find	a	minimum	number	of	prime	implicants	which	cover	all	of	the	1’s	on	the	map.	The	function	plotted	in	Figure	5-16	has	six	prime	implicants.	Three	of	these	prime	implicants	cover	all	of	the	1’s	on	the	map,	and	the	minimum	solution	is
the	sum	of	these	three	prime	implicants.	The	shaded	loops	represent	prime	implicants	which	are	not	part	of	the	minimum	solution.	When	writing	down	a	list	of	all	of	the	prime	implicants	from	the	map,	note	that	there	are	often	prime	implicants	which	are	not	included	in	the	minimum	sum	of	products.	Even	though	all	of	the	1’s	in	a	term	have	already
been	covered	by	prime	Karnaugh	Maps	FIGURE	5-16	Determination	of	All	Prime	Implicants	©	Cengage	Learning	2014	145	ab	00	cd	01	11	1	1	1	1	00	10	a′c′d	01	1	11	1	10	Minimum	solution:	F	=	a′b′d	+	bc′	+	ac	All	prime	implicants:	a′b′d,	bc′,	ac,	a′c′d,	ab,	b′cd	1	1	1	1	b′cd	implicants,	that	term	may	still	be	a	prime	implicant	provided	that	it	is	not
included	in	a	larger	group	of	1’s.	For	example,	in	Figure	5-16,	a′c′d	is	a	prime	implicant	because	it	cannot	be	combined	with	other	1’s	to	eliminate	another	variable.	However,	abd	is	not	a	prime	implicant	because	it	can	be	combined	with	two	other	1’s	to	form	ab.	The	term	b′cd	is	also	a	prime	implicant	even	though	both	of	its	1’s	are	already	covered	by
other	prime	implicants.	In	the	process	of	finding	prime	implicants,	don’t-cares	are	treated	just	like	1’s.	However,	a	prime	implicant	composed	entirely	of	don’t-cares	can	never	be	part	of	the	minimum	solution.	Because	all	of	the	prime	implicants	of	a	function	are	generally	not	needed	in	forming	the	minimum	sum	of	products,	a	systematic	procedure	for
selecting	prime	implicants	is	needed.	If	prime	implicants	are	selected	from	the	map	in	the	wrong	order,	a	nonminimum	solution	may	result.	For	example,	in	Figure	5-17,	if	CD	is	chosen	first,	then	BD,	B′C,	and	AC	are	needed	to	cover	the	remaining	1’s,	and	the	solution	contains	four	terms.	However,	if	the	prime	implicants	indicated	in	Figure	5-17(b)
are	chosen	first,	all	1’s	are	covered	and	CD	is	not	needed.	In	Section	6.2,	prime	implicant	charts	are	defined.	They	can	be	used	systematically	to	find	(all)	minimum	solutions.	The	procedure	described	below	can	be	used	to	find	minimum	solutions	for	functions	that	are	not	too	complicated.	Note	that	some	of	the	minterms	on	the	map	of	Figure	5-17(a)
can	be	covered	by	only	a	single	prime	implicant,	but	other	minterms	can	be	covered	by	two	different	prime	implicants.	For	example,	m2	is	covered	only	by	B′C,	but	m3	is	covered	by	both	FIGURE	5-17	©	Cengage	Learning	2014	AB	00	CD	01	11	AB	00	CD	10	00	m5	01	11	1	10	1	01	11	10	1	1	1	1	1	1	1	00	1	1	1	1	1	11	1	1	1	10	1	01	CD	m14	m2	f	=	CD	+
BD+	B′C	+	AC	f	=	BD+	B′C	+	AC	(a)	(b)	146	Unit	5	B′C	and	CD.	If	a	minterm	is	covered	by	only	one	prime	implicant,	that	prime	implicant	is	said	to	be	essential,	and	it	must	be	included	in	the	minimum	sum	of	products.	Thus,	B′C	is	an	essential	prime	implicant	because	m2	is	not	covered	by	any	other	prime	implicant.	However,	CD	is	not	essential
because	each	of	the	1’s	in	CD	can	be	covered	by	another	prime	implicant.	The	only	prime	implicant	which	covers	m5	is	BD,	so	BD	is	essential.	Similarly,	AC	is	essential	because	no	other	prime	implicant	covers	m14.	In	this	example,	if	we	choose	all	of	the	essential	prime	implicants,	all	of	the	1’s	on	the	map	are	covered	and	the	nonessential	prime
implicant	CD	is	not	needed.	In	general,	in	order	to	find	a	minimum	sum	of	products	from	a	map,	we	should	first	loop	all	of	the	essential	prime	implicants.	One	way	of	finding	essential	prime	implicants	on	a	map	is	simply	to	look	at	each	1	on	the	map	that	has	not	already	been	covered,	and	check	to	see	how	many	prime	implicants	cover	that	1.	If	there	is
only	one	prime	implicant	which	covers	the	1,	that	prime	implicant	is	essential.	If	there	are	two	or	more	prime	implicants	which	cover	the	1,	we	cannot	say	whether	these	prime	implicants	are	essential	or	not	without	checking	the	other	minterms.	For	simple	problems,	we	can	locate	the	essential	prime	implicants	in	this	way	by	inspection	of	each	1	on
the	map.	For	example,	in	Figure	5-16,	m4	is	covered	only	by	the	prime	implicant	bc′,	and	m10	is	covered	only	by	the	prime	implicant	ac.	All	other	1’s	on	the	map	are	covered	by	two	prime	implicants;	therefore,	the	only	essential	prime	implicants	are	bc′	and	ac.	For	more	complicated	maps,	and	especially	for	maps	with	five	or	more	variables,	we	need	a
more	systematic	approach	for	finding	the	essential	prime	implicants.	When	checking	a	minterm	to	see	if	it	is	covered	by	only	one	prime	implicant,	we	must	look	at	all	squares	adjacent	to	that	minterm.	If	the	given	minterm	and	all	of	the	1’s	adjacent	to	it	are	covered	by	a	single	term,	then	that	term	is	an	essential	prime	implicant.1	If	all	of	the	1’s
adjacent	to	a	given	minterm	are	not	covered	by	a	single	term,	then	there	are	two	or	more	prime	implicants	which	cover	that	minterm,	and	we	cannot	say	whether	these	prime	implicants	are	essential	or	not	without	checking	the	other	minterms.	Figure	5-18	illustrates	this	principle.	FIGURE	5-18	©	Cengage	Learning	2014	AB	CD	00	00	1	01	11	10	1	0	4
12	8	5	13	9	A′C′	01	1	1	1	11	10	1	3	7	15	11	2	6	14	10	1	A′B′D′	1	ACD	1	1	This	statement	is	proved	in	Appendix	D.	Note:	1’s	shaded	in	blue	are	covered	by	only	one	prime	implicant.	All	other	1’s	are	covered	by	at	least	two	prime	implicants.	Karnaugh	Maps	147	The	adjacent	1’s	for	minterm	m0	(l0)	are	11,	12,	and	l4.	Because	no	single	term	covers	these
four	1’s,	no	essential	prime	implicant	is	yet	apparent.	The	adjacent	1’s	for	11	are	10	and	15,	so	the	term	which	covers	these	three	1’s	(A′C′)	is	an	essential	prime	implicant.	Because	the	only	1	adjacent	to	12	is	10,	A′B′D′	is	also	essential.	Because	the	1’s	adjacent	to	17	(15	and	115)	are	not	covered	by	a	single	term,	neither	A′BD	nor	BCD	is	essential	at
this	point.	However,	because	the	only	1	adjacent	to	111	is	115,	ACD	is	essential.	To	complete	the	minimum	solution,	one	of	the	nonessential	prime	implicants	is	needed.	Either	A′BD	or	BCD	may	be	selected.	The	final	solution	is	A′BD	A′C′	+	A′B′D′	+	ACD	+	%	or	BCD	If	a	don’t-care	minterm	is	present	on	the	map,	we	do	not	have	to	check	it	to	see	if	it	is
covered	by	one	or	more	prime	implicants.	However,	when	checking	a	1	for	adjacent	1’s,	we	treat	the	adjacent	don’t-cares	as	if	they	were	1’s	because	don’tcares	may	be	combined	with	1’s	in	the	process	of	forming	prime	implicants.	The	following	procedure	can	then	be	used	to	obtain	a	minimum	sum	of	products	from	a	Karnaugh	map:	1.	2.	3.	4.	5.
Choose	a	minterm	(a	1)	which	has	not	yet	been	covered.	Find	all	1’s	and	X’s	adjacent	to	that	minterm.	(Check	the	n	adjacent	squares	on	an	n-variable	map.)	If	a	single	term	covers	the	minterm	and	all	of	the	adjacent	1’s	and	X’s,	then	that	term	is	an	essential	prime	implicant,	so	select	that	term.	(Note	that	don’t-care	terms	are	treated	like	1’s	in	steps	2
and	3	but	not	in	step	1.)	Repeat	steps	1,	2,	and	3	until	all	essential	prime	implicants	have	been	chosen.	Find	a	minimum	set	of	prime	implicants	which	cover	the	remaining	1’s	on	the	map.	(If	there	is	more	than	one	such	set,	choose	a	set	with	a	minimum	number	of	literals.)	Figure	5-19	gives	a	flowchart	for	this	procedure.	The	following	example	(Figure
5-20)	illustrates	the	procedure.	Starting	with	14,	we	see	that	the	adjacent	1’s	and	X’s	(X0,	15,	and	16)	are	not	covered	by	a	single	term,	so	no	essential	prime	implicant	is	apparent.	However,	16	and	its	adjacent	1’s	and	X’s	(14	and	X7)	are	covered	by	A′B,	so	A′B	is	an	essential	prime	implicant.	Next,	looking	at	113,	we	see	that	its	adjacent	1’s	and	X’s
(15,	19,	and	X15)	are	not	covered	by	a	single	term,	so	no	essential	prime	implicant	is	apparent.	Similarly,	an	examination	of	the	terms	adjacent	to	18	and	19	reveals	no	essential	prime	implicants.	However,	110	has	only	18	adjacent	to	it,	so	AB′D′	is	an	essential	prime	implicant	because	it	covers	both	110	and	18.	Having	first	selected	the	essential	prime
implicants,	we	now	choose	AC′D	because	it	covers	both	of	the	remaining	1’s	on	the	map.	Judicious	selection	of	the	order	in	which	the	minterms	are	selected	(step	1)	reduces	the	amount	of	work	required	in	applying	this	procedure.	As	will	be	seen	in	the	next	section,	this	procedure	is	especially	helpful	in	obtaining	minimum	solutions	for	five-	and	six-
variable	problems.	There	are	two	equivalent	methods	of	obtaining	minimum	product-of-sum	expressions	for	a	function	f	.	As	mentioned	above,	one	method	is	to	find	minimum	a	sum-of-products	expression	for	f	′,	and	then	complement	f	′	to	obtain	a	minimum	148	Unit	5	FIGURE	5-19	Flowchart	for	Determining	a	Minimum	Sum	of	Products	Using	a
Karnaugh	Map	Choose	a	1	which	has	not	been	covered.	©	Cengage	Learning	2014	Find	all	adjacent	1’s	and	X’s.	Are	the	chosen	1	and	its	adjacent	1’s	and	X’s	covered	by	a	single	term?	NO	YES	That	term	is	an	essential	prime	implicant.	Loop	it.	All	uncovered	1’s	checked?	NO	Note:	All	essential	prime	implicants	have	been	determined	at	this	point.	YES
Find	a	minimum	set	of	prime	implicants	which	cover	the	remaining	1’s	on	the	map.	STOP	FIGURE	5-20	©	Cengage	Learning	2014	AB	CD	00	00	01	X0	14	11	10	18	01	15	113	11	X7	X15	10	16	19	110	Shaded	1’s	are	covered	by	only	one	prime	implicant.	Karnaugh	Maps	149	product-of-sums	expression	for	f.	Alternatively,	we	can	perform	the	dual	of	the
procedure	for	finding	minimum	sum	of	products.	Let	S	be	a	sum	term.	If	every	input	combination	for	which	S	=	0	f	is	also	0,	then	S	can	be	a	term	in	a	product-of-sums	expression	for	F.	We	will	call	such	a	sum	term	an	implicate	of	f	.	Implicate	S	is	a	prime	implicate	if	it	cannot	be	combined	with	any	other	implicate	to	eliminate	a	literal	from	S.	All
implicates	in	a	minimum	product-of-sums	expression	for	f	must	be	prime	implicates.	The	prime	implicates	of	f	can	be	found	by	looping	the	largest	groups	of	adjacent	zeros	on	the	Karnaugh	map	for	f	.	If	a	prime	implicate	is	the	only	prime	implicate	covering	a	maxterm	(zero)	of	f	,	then	it	is	an	essential	prime	implicate	and	must	be	included	in	any
minimum	product-of-sums	expression	for	f	.	5.5	Five-Variable	Karnaugh	Maps	A	five-variable	map	can	be	constructed	in	three	dimensions	by	placing	one	four-variable	map	on	top	of	a	second	one.	Terms	in	the	bottom	layer	are	numbered	0	through	15	and	corresponding	terms	in	the	top	layer	are	numbered	16	through	31,	so	that	terms	in	the	bottom
layer	contain	A′	and	those	in	the	top	layer	contain	A.	To	represent	the	map	in	two	dimensions,	we	will	divide	each	square	in	a	four-variable	map	by	a	diagonal	line	and	place	terms	in	the	bottom	layer	below	the	line	and	terms	in	the	top	layer	above	the	line	(Figure	5-21).	Terms	in	the	top	or	bottom	layer	combine	just	like	terms	on	a	four-variable	map.	In
addition,	two	terms	in	the	same	square	which	are	separated	by	a	diagonal	line	differ	in	only	one	variable	and	can	be	combined.	However,	some	terms	which	appear	to	be	physically	adjacent	are	not.	For	example,	terms	0	and	20	are	not	adjacent	because	they	appear	in	a	different	column	and	a	FIGURE	5-21	A	Five-Variable	Karnaugh	Map	These	terms
do	not	combine	because	they	are	in	different	layers	and	different	columns	(they	differ	in	two	variables).	BC	DE	©	Cengage	Learning	2014	00	01	16	11	20	00	1	1	21	29	1	3	18	10	7	11	These	four	terms	(two	from	top	layer	and	two	from	bottom)	combine	to	yield	CDE(C	from	the	middle	two	columns	and	DE	from	the	row).	27	1	22	1	1	13	1	9	These	eight
terms	combine	to	give	BD′(B	from	last	two	columns	and	D′	from	top	two	rows;	A	is	eliminated	because	four	terms	are	in	the	top	layer	and	four	in	the	bottom).	1	1	31	1	11	8	25	5	23	1	12	1	19	1	1	4	01	A	1	0	24	1	0	17	10	28	1	15	30	26	1	2	6	14	10	These	two	terms	in	the	top	layer	combine	to	give	AB′DE′.	150	Unit	5	different	layer.	Each	term	can	be
adjacent	to	exactly	five	other	terms,	four	in	the	same	layer	and	one	in	the	other	layer	(Figure	5-22).	An	alternate	representation	for	five-variable	maps	is	to	draw	the	two	layers	side-by-side,	as	in	Figure	5-28,	but	most	individuals	find	adjacencies	more	difficult	to	see	when	this	form	is	used.	When	checking	for	adjacencies,	each	term	should	be	checked
against	the	five	possible	adjacent	squares.	(In	general,	the	number	of	adjacent	squares	is	equal	to	the	number	of	variables.)	Two	examples	of	five-variable	minimization	using	maps	follow.	Figure	5-23	is	a	map	of	F(A,	B,	C,	D,	E)	=	Σ	m(0,	1,	4,	5,	13,	15,	20,	21,	22,	23,	24,	26,	28,	30,	31)	FIGURE	5-22	©	Cengage	Learning	2014	BC	00	DE	01	00	11	10	1	1
01	A	1	0	1	1	11	1	1	10	FIGURE	5-23	BC	DE	©	Cengage	Learning	2014	00	01	1	00	1	1	11	10	1	1	24	Shaded	1’s	are	used	to	select	essential	prime	implicants.	0	P1	01	A	1	0	1	1	1	1	11	1	1	10	1	1	P3	P4	1	1	P2	Karnaugh	Maps	151	Prime	implicant	P1	is	chosen	first	because	all	of	the	1’s	adjacent	to	minterm	0	are	covered	by	P1.	Prime	implicant	P2	is	chosen
next	because	all	of	the	1’s	adjacent	to	minterm	24	are	covered	by	P2.	All	of	the	remaining	1’s	on	the	map	can	be	covered	by	at	least	two	different	prime	implicants,	so	we	proceed	by	trial	and	error.	After	a	few	tries,	it	becomes	apparent	that	the	remaining	1’s	can	be	covered	by	three	prime	implicants.	If	we	choose	prime	implicants	P3	and	P4	next,	the
remaining	two	1’s	can	be	covered	by	two	different	groups	of	four.	The	resulting	minimum	solution	is	AB′C	F	=	A′B′D′	+	ABE′	+	ACD	+	A′BCE	+	%	or	P1	P2	P3	P4	B′CD′	Figure	5-24	is	a	map	of	F	(A,	B,	C,	D,	E)	=	Σ	m(0,	1,	3,	8,	9,	14,	15,	16,	17,	19,	25,	27,	31)	All	1’s	adjacent	to	m16	are	covered	by	P1,	so	choose	P1	first.	All	1’s	adjacent	to	m3	are
covered	by	P2,	so	P2	is	chosen	next.	All	1’s	adjacent	to	m8	are	covered	by	P3,	so	P3	is	chosen.	Because	m14	is	only	adjacent	to	m15,	P4	is	also	essential.	There	are	no	more	essential	prime	implicants,	and	the	remaining	1’s	can	be	covered	by	two	terms,	P5	and	(1-9-17-25)	or	(17-19-25-27).	The	final	solution	is	C′D′E	F	=	B′C′D′	+	B′C′E	+	A′C′D′	+	A′BCD
+	ABDE	+	%	or	P1	P2	P3	P4	P5	AC′E	FIGURE	5-24	BC	DE	©	Cengage	Learning	2014	16	P1	00	01	1	00	10	28	P3	24	1	1	4	0	17	21	1	01	A	1	0	11	20	5	23	1	8	25	1	19	P2	29	1	1	11	12	13	31	9	27	1	1	1	P5	1	1	3	18	7	22	15	30	10	11	26	1	2	6	14	P4	10	152	Unit	5	5.6	Other	Uses	of	Karnaugh	Maps	Many	operations	that	can	be	performed	using	a	truth	table	or
algebraically	can	be	done	using	a	Karnaugh	map.	A	map	conveys	the	same	information	as	a	truth	table—	it	is	just	arranged	in	a	different	format.	If	we	plot	an	expression	for	F	on	a	map,	we	can	read	off	the	minterm	and	maxterm	expansions	for	F	and	for	F	′.	From	the	map	of	Figure	5-14,	the	minterm	expansion	of	f	is	f	=	Σ	m(0,	2,	3,	4,	8,	10,	11,	15)	and
because	each	0	corresponds	to	a	maxterm,	the	maxterm	expansion	of	f	is	f	=	Π	M(1,	5,	6,	7,	9,	12,	13,	14)	We	can	prove	that	two	functions	are	equal	by	plotting	them	on	maps	and	showing	that	they	have	the	same	Karnaugh	map.	We	can	perform	the	AND	operation	(or	the	OR	operation)	on	two	functions	by	ANDing	(or	ORing)	the	1’s	and	0’s	which
appear	in	corresponding	positions	on	their	maps.	This	procedure	is	valid	because	it	is	equivalent	to	doing	the	same	operations	on	the	truth	tables	for	the	functions.	A	Karnaugh	map	can	facilitate	factoring	an	expression.	Inspection	of	the	map	reveals	terms	which	have	one	or	more	variables	in	common.	For	the	map	of	Figure	5-25,	the	two	terms	in	the
first	column	have	A′B′	in	common;	the	two	terms	in	the	lower	right	corner	have	AC	in	common.	FIGURE	5-25	©	Cengage	Learning	2014	AB	CD	00	00	1	01	1	11	1	01	11	10	F	=	A′B′(C′	+	D)	+	AC(B	+	D′)	10	1	1	1	When	simplifying	a	function	algebraically,	the	Karnaugh	map	can	be	used	as	a	guide	in	determining	what	steps	to	take.	For	example,	consider
the	function	F	=	ABCD	+	B′CDE	+	A′B′	+	BCE′	From	the	map	(Figure	5-26),	we	see	that	in	order	to	get	the	minimum	solution,	we	must	add	the	term	ACDE.	We	can	do	this	using	the	consensus	theorem:	F	=	ABCD	+	B′CDE	+	A′B′	+	BCE′	+	ACDE	↑	Karnaugh	Maps	153	As	can	be	seen	from	the	map,	this	expression	now	contains	two	redundant	terms,
ABCD	and	B′CDE.	These	can	be	eliminated	using	the	consensus	theorem,	which	gives	the	minimum	solution:	F	=	A′B	+	BCE′	+	ACDE	FIGURE	5-26	BC	00	DE	©	Cengage	Learning	2014	01	16	00	1	01	21	12	29	8	25	1	1	19	5	23	13	31	1	1	7	22	1	15	30	6	11	Add	this	term.	.	26	1	1	2	9	27	1	1	3	18	10	1	4	1	11	24	1	1	17	10	28	0	A	1	0	11	20	1	14	10	Then
these	two	terms	can	be	eliminated.	5.7	Other	Forms	of	Karnaugh	Maps	Instead	of	labeling	the	sides	of	a	Karnaugh	map	with	0’s	and	1’s,	some	people	prefer	to	use	the	labeling	shown	in	Figure	5-27.	For	the	half	of	the	map	labeled	A,	A	=	1;	and	for	the	other	half,	A	=	0.	The	other	variables	have	a	similar	interpretation.	A	map	labeled	this	way	is
sometimes	referred	to	as	a	Veitch	diagram.	It	is	particularly	useful	for	plotting	functions	given	in	algebraic	form	rather	than	in	minterm	or	maxterm	form.	However,	when	utilizing	Karnaugh	maps	to	solve	sequential	circuit	problems	(Units	12	through	16),	the	use	of	0’s	and	1’s	to	label	the	maps	is	more	convenient.	FIGURE	5-27	Veitch	Diagrams	A	A	©
Cengage	Learning	2014	C	B	D	C	B	154	Unit	5	Two	alternative	forms	for	five-variable	maps	are	used.	One	form	simply	consists	of	two	four-variable	maps	side-by-side	as	in	Figure	5-28(a).	A	modification	of	this	uses	a	mirror	image	map	as	in	Figure	5-28(b).	In	this	map,	first	and	eighth	columns	are	“adjacent”	as	are	second	and	seventh	columns,	third
and	sixth	columns,	and	fourth	and	fifth	columns.	The	same	function	is	plotted	on	both	these	maps.	FIGURE	5-28	Other	Forms	of	Five-Variable	Karnaugh	Maps	©	Cengage	Learning	2014	A	BC	DE	00	00	1	01	1	01	11	10	1	1	1	BC	DE	00	00	1	1	01	1	11	01	11	10	1	1	1	1	B	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	E	11	10	1	1	1	D	10	A=	0	1	1	A=	1	C	C	(a)	(b)	F	=	D′E′	+
B′C′D′	+	BCE	+	A′BC′E′	+	ACDE	Programmed	Exercise	5.1	Cover	the	answers	to	this	exercise	with	a	sheet	of	paper	and	slide	it	down	as	you	check	your	answers.	Write	your	answers	in	the	space	provided	before	looking	at	the	correct	answer.	Problem	sums	for	Determine	the	minimum	sum	of	products	and	minimum	product	of	f	=	b′c′d′	+	bcd	+	acd′	+
a′b′c	+	a′bc′d	First,	plot	the	map	for	f	.	00	00	01	11	10	01	11	10	Karnaugh	Maps	Answer:	155	ab	00	cd	01	11	10	1	00	1	1	01	11	1	10	1	1	1	1	1	(a)	The	minterms	adjacent	to	m0	on	the	preceding	map	are	_________	and	_________.	(b)	Find	an	essential	prime	implicant	containing	m0	and	loop	it.	(c)	The	minterms	adjacent	to	m3	are	_________	and	_________.
(d)	Is	there	an	essential	prime	implicant	which	contains	m3?	(e)	Find	the	remaining	essential	prime	implicant(s)	and	loop	it	(them).	Answers:	ab	(a)	m2	and	m8	(c)	m2	and	m7	(d)	No	(b)	(e)	00	cd	00	01	11	1	10	1	1	01	11	1	10	1	1	1	1	1	Loop	the	remaining	1’s	using	a	minimum	number	of	loops.	The	two	possible	minimum	sum-of-products	forms	for	f	are	f
=	___________________________________	and	f	=	___________________________________	Answer:	ab	cd	00	00	01	11	1	10	1	1	01	f	=	b′d′	+	a′bd	+	abc	+	11	1	10	1	1	1	1	1	a′cd	or	a′b′c	156	Unit	5	Next,	we	will	find	the	minimum	product	of	sums	for	f	.	Start	by	plotting	the	map	for	f	′.	Loop	all	essential	prime	implicants	of	f	′	and	indicate	which	minterm	makes	each
one	essential.	00	01	11	10	00	01	11	10	f′	Answer:	ab	cd	00	00	01	01	11	1	1	1	1	10	1	Essential	because	of	m1	1	11	10	Essential	because	of	m11	Essential	because	of	m6	1	f′	Loop	the	remaining	1’s	and	write	the	minimum	sum	of	products	for	f	′.	f	′=	__________________________________	The	minimum	product	of	sums	for	f	is	therefore	f	=
__________________________________	Final	Answer:	f	′	=	b′c′d	+	a′bd′	+	ab′d	+	abc′	f	=	(b	+	c	+	d′)(a	+	b′	+	d)(a′	+	b	+	d′)(a′	+	b′	+	c)	Programmed	Exercise	5.2	Problem:	Determine	a	minimum	sum-of-products	expression	for	f	(a,	b,	c,	d,	e)	=	(a′	+	c	+	d)(a′	+	b	+	e)	(a	+	c′	+	e′)	(c	+	d	+	e′)	(b	+	c	+	d′	+	e)	(a′	+	b′	+	c	+	e′)	Karnaugh	Maps	157	The	first	step
in	the	solution	is	to	plot	a	map	for	f	.	Because	f	is	given	in	productof-sums	form,	it	is	easier	to	first	plot	the	map	for	f	′	and	then	complement	the	map.	Write	f	′	as	a	sum	of	products:	f	′	=	___	Now	plot	the	map	for	f	′.	(Note	that	there	are	three	terms	in	the	upper	layer,	one	term	in	the	lower	layer,	and	two	terms	which
span	the	two	layers.)	Next,	convert	your	map	for	f	′	to	a	map	for	f	.	bc	bc	00	de	01	11	10	00	de	00	01	11	10	00	01	01	a	1	0	a	1	0	11	11	10	10	f′	f	Answer:	bc	de	bc	00	01	11	10	00	de	01	16	00	1	1	1	11	20	1	1	17	01	1	1	1	11	1	1	1	1	1	a	1	0	29	1	1	5	31	1	1	1	1	1	7	15	22	30	1	2	1	1	6	1	14	f	11	26	1	10	f′	9	27	1	18	1	13	23	1	11	8	25	1	3	10	12	21	19	1	1	4	01	1
24	1	00	0	a	1	0	10	28	10	158	Unit	5	The	next	step	is	to	determine	the	essential	prime	implicants	of	f	.	(a)	Why	is	a′d′e′	an	essential	prime	implicant?	(b)	Which	minterms	are	adjacent	to	m3?	___________	To	m19?	___________	(c)	Is	there	an	essential	prime	implicant	which	covers	m3	and	m19?	(d)	Is	there	an	essential	prime	implicant	which	covers	m21?	(e)
Loop	the	essential	prime	implicants	which	you	have	found.	Then,	find	two	more	essential	prime	implicants	and	loop	them.	Answers:	(a)	(b)	(c)	(d)	(e)	It	covers	m0	and	both	adjacent	minterms.	m19	and	m11;	m3	and	m23	No	Yes	bc	de	00	01	1	1	11	10	1	00	01	1	1	1	1	1	1	a	1	0	11	1	1	1	1	1	10	1	1	1	(a)	Why	is	there	no	essential	prime	implicant	which
covers	m11?	(b)	Why	is	there	no	essential	prime	implicant	which	covers	m28?	Because	there	are	no	more	essential	prime	implicants,	loop	a	minimum	number	of	terms	which	cover	the	remaining	1’s.	Answers:	(a)	All	adjacent	1’s	of	m11(m3,	m10)	cannot	be	covered	by	one	grouping.	(b)	All	adjacent	1’s	of	m28(m12,	m30,	m29)	cannot	be	covered	by	one
grouping.	Karnaugh	Maps	159	bc	de	00	01	1	1	11	10	1	00	1	01	a	1	0	1	11	1	1	1	1	Note:	There	are	five	other	possible	ways	to	loop	the	four	remaining	1’s.	1	1	1	10	1	1	1	1	1	Write	down	two	different	minimum	sum-of-products	expressions	for	f	.	f	=	___________________________________	f	=	___________________________________	Answer:	abc	b′c′de	+	a′c′de	f	=
a′d′e′	+	ace	+	a′ce′	+	bde′	+	|	or	¶	+	|	b′c′de	+	a′	bc′d	¶	bce′	ab′de	+	a′c′de	Problems	5.3	Find	the	minimum	sum	of	products	for	each	function	using	a	Karnaugh	map.	(a)	f1(a,	b,	c)	=	m0	+	m2	+	m5	+	m6	(b)	f2(d,	e,	f)	=	Σ	m(0,	1,	2,	4)	(c)	f3(r,	s,	t)	=	rt	′	+	r′s′	+	r′s	(d)	f4(x,	y,	z)	=	M0	·	M5	5.4	(a)	Plot	the	following	function	on	a	Karnaugh	map.	(Do	not
expand	to	minterm	form	before	plotting.)	F(A,	B,	C,	D)	=	BD′	+	B′CD	+	ABC	+	ABC′D	+	B′D′	(b)	Find	the	minimum	sum	of	products.	(c)	Find	the	minimum	product	of	sums.	160	Unit	5	5.5	A	switching	circuit	has	two	control	inputs	(C1	and	C2),	two	data	inputs	(X1	and	X2),	and	one	output	(Z).	The	circuit	performs	one	of	the	logic	operations	AND,	OR,
EQU	(equivalence),	or	XOR	(exclusive	OR)	on	the	two	data	inputs.	The	function	performed	depends	on	the	control	inputs:	C1	0	0	1	1	C2	0	1	0	1	Function	Performed	by	Circuit	OR	XOR	AND	EQU	(a)	Derive	a	truth	table	for	Z.	(b)	Use	a	Karnaugh	map	to	find	a	minimum	AND-OR	gate	circuit	to	realize	Z.	5.6	Find	the	minimum	sum-of-products	expression
for	each	function.	Underline	the	essential	prime	implicants	in	your	answer	and	tell	which	minterm	makes	each	one	essential.	(a)	f(a,	b,	c,	d)	=	Σ	m(0,	1,	3,	5,	6,	7,	11,	12,	14)	(b)	f(a,	b,	c,	d)	=	Π	M(1,	9,	11,	12,	14)	(c)	f(a,	b,	c,	d)	=	Π	M(5,	7,	13,	14,	15)	·	Π	D(1,	2,	3,	9)	5.7	Find	the	minimum	sum-of-products	expression	for	each	function.	(a)	f(a,	b,	c,	d)	=
Σ	m(0,	2,	3,	4,	7,	8,	14)	(b)	f(a,	b,	c,	d)	=	Σ	m(1,	2,	4,	15)	+	Σ	d(0,	3,	14)	(c)	f(a,	b,	c,	d)	=	Π	M(1,	2,	3,	4,	9,	15)	(d)	f(a,	b,	c,	d)	=	Π	M(0,	2,	4,	6,	8)	·	Π	D(1,	12,	9,	15)	5.8	Find	the	minimum	sum	of	products	and	the	minimum	product	of	sums	for	each	function:	(a)	f(a,	b,	c,	d)	=	Π	M(0,	1,	6,	8,	11,	12)	·	Π	D(3,	7,	14,	15)	(b)	f(a,	b,	c,	d)	=	Σ	m(1,	3,	4,	11)	+	Σ
d(2,	7,	8,	12,	14,	15)	5.9	Find	the	minimum	sum	of	products	and	the	minimum	product	of	sums	for	each	function:	(a)	F(A,	B,	C,	D,	E)	=	Σ	m(0,	1,	2,	6,	7,	9,	10,	15,	16,	18,	20,	21,	27,	30)	+	Σ	d(3,	4,	11,	12,	19)	(b)	F(A,	B,	C,	D,	E)	=	Π	M(0,	3,	6,	9,	11,	19,	20,	24,	25,	26,	27,	28,	29,	30)	·	Π	D(1,	2,	12,	13)	5.10	F(a,	b,	c,	d,	e)	=	Σ	m(0,	3,	4,	5,	6,	7,	8,	12,	13,
14,	16,	21,	23,	24,	29,	31)	(a)	Find	the	essential	prime	implicants	using	a	Karnaugh	map,	and	indicate	why	each	one	of	the	chosen	prime	implicants	is	essential	(there	are	four	essential	prime	implicants).	(b)	Find	all	of	the	prime	implicants	by	using	the	Karnaugh	map.	(There	are	nine	in	all.)	Karnaugh	Maps	161	5.11	Find	a	minimum	product-of-sums
solution	for	f	.	Underline	the	essential	prime	implicates.	f(a,	b,	c,	d,	e)	=	Σ	m(2,	4,	5,	6,	7,	8,	10,	12,	14,	16,	19,	27,	28,	29,	31)	+	Σ	d(1,	30)	5.12	Given	F	=	AB′D′	+	A′B	+	A′C	+	CD.	(a)	Use	a	Karnaugh	map	to	find	the	maxterm	expression	for	F	(express	your	answer	in	both	decimal	and	algebric	notation).	(b)	Use	a	Karnaugh	map	to	find	the	minimum
sum-of-products	form	for	F	′.	(c)	Find	the	minimum	product	of	sums	for	F.	5.13	Find	the	minimum	sum	of	products	for	the	given	expression.	Then,	make	minterm	5	a	don’t-care	term	and	verify	that	the	minimum	sum	of	products	is	unchanged.	Now,	start	again	with	the	original	expression	and	find	each	minterm	which	could		individually		be	made	a
don’t-care	without	changing	the	minimum	sum	of	products.	F(A,	B,	C,	D)	=	A′C′	+	B′C	+	ACD′	+	BC′D	5.14	Find	the	minimum	sum-of-products	expressions	for	each	of	these	functions.	(a)	f1(A,	B,	C)	=	m1	+	m2	+	m5	+	m7	(b)	f2(d,	e,	f)	=	Σ	m(1,	5,	6,	7)	(c)	f3(r,	s,	t)	=	rs′	+	r′s′	+	st	′	(d)	f4(a,	b,	c)	=	m0	+	m2	+	m3	+	m7	(e)	f5(n,	p,	q)	=	Σ	m(1,	3,	4,	5)	(f)
f6(x,	y,	z)	=	M1M7	5.15	Find	the	minimum	product-of-sums	expression	for	each	of	the	functions	in	Problem	5.14.	5.16	Find	the	minimum	sum	of	products	for	each	of	these	functions.	(a)	f1(A,	B,	C)	=	m1	+	m3	+	m4	+	m6	(b)	f2(d,	e,	f)	=	Σ	m(1,	4,	5,	7)	(c)	f3(r,	s,	t)	=	r	′t	′	+	rs′	+	rs	(d)	f1(a,	b,	c)	=	m3	+	m4	+	m6	+	m7	(e)	f2(n,	p,	q)	=	Σ	m(2,	3,	5,	7)	(f)
f4(x,	y,	z)	=	M3M6	5.17	(a)	Plot	the	following	function	on	a	Karnaugh	map.	(Do	not	expand	to	minterm	form	before	plotting.)	F(A,	B,	C,	D)	=	A′B′	+	CD′	+	ABC	+	A′B′CD′	+	ABCD′	(b)	Find	the	minimum	sum	of	products.	(c)	Find	the	minimum	product	of	sums.	5.18	Work	Problem	5.17	for	the	following:	f(A,	B,	C,	D)	=	A′B′	+	A′B′C′	+	A′BD′	+	AC′D	+	A′BD
+	AB′CD′	162	Unit	5	5.19	A	switching	circuit	has	two	control	inputs	(C1	and	C2),	two	data	inputs	(X1	and	X2),	and	one	output	(Z).	The	circuit	performs	logic	operations	on	the	two	data	inputs,	as	shown	in	this	table:	C1	0	0	1	1	C2	0	1	0	1	Function	Performed	by	Circuit	X1X2	X1	⊕	X2	X′1	+	X2	X	1	≡	X2	(a)	Derive	a	truth	table	for	Z.	(b)	Use	a	Karnaugh
map	to	find	a	minimum	OR-AND	gate	circuit	to	realize	Z.	5.20	Use	Karnaugh	maps	to	find	all	possible	minimum	sum-of-products	expressions	for	each	function.	(a)	F(a,	b,	c)	=	Π	M(3,	4)	(b)	g(d,	e,	f)	=	Σ	m(1,	4,	6)	+	Σ	d(0,	2,	7)	(c)	F(p,	q,	r)	=	(p	+	q′	+	r)(p′	+	q	+	r′)	(d)	F(s,	t,	u)	=	Σ	m(1,	2,	3)	+	Σ	d(0,	5,	7)	(e)	f(a,	b,	c)	=	Π	M(2,	3,	4)	(f)	G(D,	E,	F)	=	Σ
m(1,	6)	+	Σ	d(0,	3,	5)	5.21	Simplify	the	following	expression	first	by	using	a	map	and	then	by	using	Boolean	algebra.	Use	the	map	as	a	guide	to	determine	which	theorems	to	apply	to	which	terms	for	the	algebraic	simplification.	F	=	a′b′c′	+	a′c′d	+	bcd	+	abc	+	ab′	5.22	Find	all	prime	implicants	and	all	minimum	sum-of-products	expressions	for	each	of
the	following	functions.	(a)	f(A,	B,	C,	D)	=	Σ	m(4,	11,	12,	13,	14)	+	Σ	d(5,	6,	7,	8,	9,	10)	(b)	f(A,	B,	C,	D)	=	Σ	m(3,	11,	12,	13,	14)	+	Σ	d(5,	6,	7,	8,	9,	10)	(c)	f(A,	B,	C,	D)	=	Σ	m(1,	2,	4,	13,	14)	+	Σ	d(5,	6,	7,	8,	9,	10)	(d)	f(A,	B,	C,	D)	=	Σ	m(4,	15)	+	Σ	d(5,	6,	7,	8,	9,	10)	(e)	f(A,	B,	C,	D)	=	Σ	m(3,	4,	11,	15)	+	Σ	d(5,	6,	7,	8,	9,	10)	(f)	f(A,	B,	C,	D)	=	Σ	m(4)	+	Σ
d(5,	6,	7,	8,	9,	10,	11,	12,	13,	14)	(g)	f(A,	B,	C,	D)	=	Σ	m(4,	15)	+	Σ	d(0,	1,	2,	5,	6,	7,	8,	9,	10)	5.23	For	each	function	in	Problem	5.22,	find	all	minimum	product-of-sums	expressions.	5.24	Find	the	minimum	sum-of-products	expression	for	(a)	Σ	m(0,	2,	3,	5,	6,	7,	11,	12,	13)	(b)	Σ	m(2,	4,	8)	+	Σ	d(0,	3,	7)	(c)	Σ	m(1,	5,	6,	7,	13)	+	Σ	d(4,	8)	(d)	f(w,	x,	y,	z)	=	Σ
m(0,	3,	5,	7,	8,	9,	10,	12,	13)	+	Σ	d(1,	6,	11,	14)	(e)	Π	M(0,	1,	2,	5,	7,	9,	11)	·	Π	D(4,	10,	13)	Karnaugh	Maps	163	5.25	Work	Problem	5.24	for	the	following:	(a)	f	(a,	b,	c,	d)	=	Σ	m(1,	3,	4,	5,	7,	9,	13,	15)	(b)	f	(a,	b,	c,	d)	=	Π	M(0,	3,	5,	8,	11)	(c)	f	(a,	b,	c,	d)	=	Σ	m(0,	2,	6,	9,	13,	14)	+	Σ	d(3,	8,	10)	(d)	f	(a,	b,	c,	d)	=	Π	M(0,	2,	6,	7,	9,	12,	13)	·	Π	D(1,	3,	5)	5.26
Find	the	minimum	product	of	sums	for	the	following.	Underline	the	essential	prime	implicates	in	your	answer.	(a)	Π	M(0,	2,	4,	5,	6,	9,	14)	·	Π	D(10,	11)	(b)	Σ	m(1,	3,	8,	9,	15)	+	Σ	d(6,	7,	12)	5.27	Find	a	minimum	sum-of-products	and	a	minimum	product-of-sums	expression	for	each	function:	(a)	f	(A,	B,	C,	D)	=	Π	M(0,	2,	10,	11,	12,	14,	15)	·	Π	D(5,	7)	(b)
f	(w,	x,	y,	z)	=	Σ	m(0,	3,	5,	7,	8,	9,	10,	12,	13)	+	Σ	d(1,	6,	11,	14)	5.28	A	logic	circuit	realizes	the	function	F(a,	b,	c,	d)	=	a′b′	+	a′cd	+	ac′d	+	ab′d′.	Assuming	that	a	=	c	never	occurs	when	b	=	d	=	1,	find	a	simplified	expression	for	F.	5.29	Given	F	=	AB′D′	+	A′B	+	A′C	+	CD.	(a)	Use	a	Karnaugh	map	to	find	the	maxterm	expression	for	F	(express	your
answer	in	both	decimal	and	algebric	notation).	(b)	Use	a	Karnaugh	map	to	find	the	minimum	sum-of-products	form	for	F	′.	(c)	Find	the	minimum	product	of	sums	for	F.	5.30	Assuming	that	the	inputs	ABCD	=	0101,	BCD	=	1001,	ABCD	=	1011	never	occur,	find	a	simplified	expression	for	F	=	A′BC′D	+	A′B′D	+	A′CD	+	ABD	+	ABC	5.31	Find	all	of	the
prime	implicants	for	each	of	the	functions	plotted	on	page	157.	5.32	Find	all	of	the	prime	implicants	for	each	of	the	plotted	functions:	bc	bc	00	de	01	1	11	10	00	1	1	1	a	1	0	10	1	1	1	1	1	1	11	1	01	11	10	1	1	00	01	00	de	1	a	1	0	11	F	1	1	01	10	1	1	1	1	1	1	1	1	1	1	G	1	164	Unit	5	5.33	Given	that	f	(a,	b,	c,	d,	e)	=	Σ	m(6,	7,	9,	11,	12,	13,	16,	17,	18,	20,	21,	23,
25,	28),	using	a	Karnaugh	map,	(a)	Find	the	essential	prime	implicants	(three).	(b)	Find	the	minimum	sum	of	products	(7	terms).	(c)	Find	all	of	the	prime	implicants	(twelve).	5.34	A	logic	circuit	realizing	the	function	f	has	four	inputs	a,	b,	c,	d.	The	three	inputs	a,	b,	and	c	are	the	binary	representation	of	the	digits	0	through	7	with	a	being	the	most
significant	bit.	The	input	d	is	an	odd-parity	bit;	that	is,	the	value	of	d	is	such	that	a,	b,	c,	and	d	always	contains	an	odd	number	of	1’s.	(For	example,	the	digit	1	is	represented	by	abc	=	001	and	d	=	0,	and	the	digit	3	is	represented	by	abcd	=	0111.)	The	function	f	has	value	1	if	the	input	digit	is	a	prime	number.	(A	number	is	prime	if	it	is	divisible	only	by
itself	and	1;	1	is	considered	to	be	prime,	and	0	is	not.)	(a)	Draw	a	Karnaugh	map	for	f	.	(b)	Find	all	prime	implicants	of	f	.	(c)	Find	all	minimum	sum	of	products	for	f	.	(d)	Find	all	prime	implicants	of	f	′.	(e)	Find	all	minimum	product	of	sums	for	f	.	5.35	The	decimal	digits	0	though	9	are	represented	using	five	bits	A,	B,	C,	D,	and	E.	The	bits	A,	B,	C,	and	D
are	the	BCD	representation	of	the	decimal	digit,	and	bit	E	is	a	parity	bit	that	makes	the	five	bits	have	odd	parity.	The	function	F	(A,	B,	C,	D,	E)	has	value	1	if	the	decimal	digit	represented	by	A,	B,	C,	D,	and	E	is	divisible	by	either	3	or	4.	(Zero	is	divisible	by	3	and	4.)	(a)	Draw	a	Karnaugh	map	for	f	.	(b)	Find	all	prime	implicants	of	f	.	(Prime	implicants
containing	only	don’t-cares	need	not	be	included.)	(c)	Find	all	minimum	sum	of	products	for	f	.	(d)	Find	all	prime	implicants	of	f	′.	(e)	Find	all	minimum	product	of	sums	for	f	.	5.36	Rework	Problem	5.35	assuming	the	decimal	digits	are	represented	in	excess-3	rather	than	BCD.	5.37	The	function	F(A,	B,	C,	D,	E)	=	Σ	m(1,	7,	8,	13,	16,	19)	+	Σ	d(0,	3,	5,	6,
9,	10,	12,	15,	17,	18,	20,	23,	24,	27,	29,	30).	(a)	Draw	a	Karnaugh	map	for	f	.	(b)	Find	all	prime	implicants	of	f	.	(Prime	implicants	containing	only	don’t-cares	need	not	be	included.)	(c)	Find	all	minimum	sum	of	products	for	f	.	(d)	Find	all	prime	implicants	of	f	′.	(e)	Find	all	minimum	product	of	sums	for	f	.	Karnaugh	Maps	165	5.38	F(a,	b,	c,	d,	e)	=	Σ	m(0,
1,	4,	5,	9,	10,	11,	12,	14,	18,	20,	21,	22,	25,	26,	28)	(a)	Find	the	essential	prime	implicants	using	a	Karnaugh	map,	and	indicate	why	each	one	of	the	chosen	prime	implicants	is	essential	(there	are	four	essential	prime	implicants).	(b)	Find	all	of	the	prime	implicants	by	using	the	Karnaugh	map	(there	are	13	in	all).	5.39	Find	the	minimum	sum-of-products
expression	for	F.	Underline	the	essential	prime	implicants	in	this	expression.	(a)	f(a,	b,	c,	d,	e)	=	Σ	m(0,	1,	3,	4,	6,	7,	8,	10,	11,	15,	16,	18,	19,	24,	25,	28,	29,	31)	+	Σ	d(5,	9,	30)	(b)	f(a,	b,	c,	d,	e)	=	Σ	m(1,	3,	5,	8,	9,	15,	16,	20,	21,	23,	27,	28,	31)	5.40	Work	Problem	5.39	with	F(A,	B,	C,	D,	E)	=	Π	M(2,	3,	4,	8,	9,	10,	14,	15,	16,	18,	19,	20,	23,	24,	30,	31)
5.41	Find	the	minimum	sum-of-products	expression	for	F.	Underline	the	essential	prime	implicants	in	your	expression.	F(A,	B,	C,	D,	E)	=	Σ	m(0,	2,	3,	5,	8,	11,	13,	20,	25,	26,	30)	+	Σ	d(6,	7,	9,	24)	5.42	F(V,	W,	X,	Y,	Z)	=	Π	M(0,	3,	5,	6,	7,	8,	11,	13,	14,	15,	18,	20,	22,	24)	·	Π	D(1,	2,	16,	17)	(a)	Find	a	minimum	sum-of-products	expression	for	F.	Underline
the	essential	prime	implicants.	(b)	Find	a	minimum	product-of-sums	expression	for	F.	Underline	the	essential	prime	implicates.	5.43	Find	the	minimum	product	of	sums	for	(a)	F(a,	b,	c,	d,	e)	=	Σ	m(1,	2,	3,	4,	5,	6,	25,	26,	27,	28,	29,	30,	31)	(b)	F(a,	b,	c,	d,	e)	=	Σ	m(1,	5,	12,	13,	14,	16,	17,	21,	23,	24,	30,	31)	+	Σ	d(0,	2,	3,	4)	5.44	Find	a	minimum	product-
of-sums	expression	for	each	of	the	following	functions:	(a)	F(v,	w,	x,	y,	z)	=	Σ	m(4,	5,	8,	9,	12,	13,	18,	20,	21,	22,	25,	28,	30,	31)	(b)	F(a,	b,	c,	d,	e)	=	Π	M(2,	4,	5,	6,	8,	10,	12,	13,	16,	17,	18,	22,	23,	24)	·	Π	D(0,	11,	30,	31)	5.45	Find	the	minimum	sum	of	products	for	each	function.	Then,	make	the	specified	minterm	a	don’t-care	and	verify	that	the

minimum	sum	of	products	is	unchanged.	Now,	start	again	with	the	original	expression	and	find	each	minterm	which	could			individually	be	made	a	don’t-care,	without	changing	the	minimum	sum	of	products.	(a)	F(A,	B,	C,	D)	=	A′C′	+	A′B′	+	ACD′	+	BC′D,	minterm	2	(b)	F(A,	B,	C,	D)	=	A′BD	+	AC′D	+	AB′	+	BCD	+	A′C′D,	minterm	7	166	Unit	5	5.46	F(V,
W,	X,	Y,	Z)	=	Π	M(0,	3,	6,	9,	11,	19,	20,	24,	25,	26,	27,	28,	29,	30)	·	Π	D(1,	2,	12,	13)	(a)	Find	two	minimum	sum-of-products	expressions	for	F.	(b)	Underline	the	essential	prime	implicants	in	your	answer	and	tell	why	each	one	is	essential.	5.47	Four	of	the	minterms	of	the	completely	specified	function	f(a,	b,	c,	d)	are	m0,	m1,	m4,	and	m5.	(a)	Specify
additional	minterms	for	f	so	that	f	has	eight	prime	implicants	with	two	literals	and	no	other	prime	implicants.	(b)	For	each	prime	implicant,	give	its	algebraic	representation	and	specify	whether	it	is	an	essential	prime	implicant.	(c)	Determine	all	minimum	sum-of-products	expressions	for	f	.	5.48	Four	of	the	minterms	of	the	completely	specified	function
f(a,	b,	c,	d)	are	m0,	m1,	m4,	and	m5.	(a)	Specify	additional	minterms	for	f	so	that	f	has	one	prime	implicant	with	one	literal,	six	prime	implicants	with	two	literals,	and	no	other	prime	implicants.	(b)	For	each	prime	implicant,	give	its	algebraic	representation	and	specify	whether	it	is	an	essential	prime	implicant.	(c)	Determine	all	minimum	sum-of-
products	expressions	for	f	.	5.49	Four	of	the	minterms	of	the	completely	specified	function	f(a,	b,	c,	d)	are	m0,	m1,	m4,	and	m5.	(a)	Specify	additional	minterms	for	f	so	that	f	has	two	prime	implicants	with	one	literal,	two	prime	implicants	with	two	literals,	and	no	other	prime	implicants.	(b)	For	each	prime	implicant,	give	its	algebraic	representation
and	specify	whether	it	is	an	essential	prime	implicant.	(c)	Determine	all	minimum	sum-of-products	expressions	for	f	.	5.50	Four	of	the	minterms	of	an	incompletely	specified	function	f(a,	b,	c,	d)	are	m0,	m1,	m4,	and	m5.	(a)	Specify	additional	minterms	and	don’t-cares	for	f	so	that	f	has	five	prime	implicants	with	two	literals	and	no	other	prime
implicants	and,	in	addition,	f	has	one	prime	implicate	with	one	literal	and	two	prime	implicates	with	two	literals.	(b)	For	each	prime	implicant,	give	its	algebraic	representation	and	specify	whether	it	is	an	essential	prime	implicant.	(c)	Determine	all	minimum	sum-of-products	expressions	for	f	.	(d)	For	each	prime	implicate,	give	its	algebraic
representation	and	specify	whether	it	is	an	essential	prime	implicate.	(e)	Determine	all	minimum	product-of-sums	expressions	for	f	.	UNIT	Quine-McCluskey	Method	6	Objectives	1.	Find	the	prime	implicants	of	a	function	by	using	the	Quine-McCluskey	method.	Explain	the	reasons	for	the	procedures	used.	2.	Define	prime	implicant	and	essential	prime
implicant.	3.	Given	the	prime	implicants,	find	the	essential	prime	implicants	and	a	minimum	sum-of-products	expression	for	a	function,	using	a	prime	implicant	chart	and	using	Petrick’s	method.	4.	Minimize	an	incompletely	specified	function,	using	the	Quine-McCluskey	method.	5.	Find	a	minimum	sum-of-products	expression	for	a	function,	using	the
method	of	map-entered	variables.	167	168	Unit	6	Study	Guide	1.	Review	Section	5.1,	Minimum	Forms	of	Switching	Functions.	2.	Read	the	introduction	to	this	unit	and,	then,	study	Section	6.1.	Determination	of	Prime	Implicants.	(a)	Using	variables	A,	B,	C,	D,	and	E,	give	the	algebraic	equivalent	of	10110	+	10010	=	10−10	10−10	+	10−11	=	10−1−
(b)	Why	will	the	following	pairs	of	terms	not	combine?	01101	+	00111	10−10	+	001−0	(c)	When	using	the	Quine-McCluskey	method	for	finding	prime	implicants,	why	is	it	necessary	to	compare	terms	only	from	adjacent	groups?	(d)	How	can	you	determine	if	two	minterms	from	adjacent	groups	will	combine	by	looking	at	their	decimal	representations?
(e)	When	combining	terms,	why	is	it	permissible	to	use	a	term	which	has	already	been	checked	off?	(f)	In	forming	Column	II	of	Table	6-1,	note	that	terms	10	and	14	were	combined	to	form	10,	14	even	though	both	10	and	14	had	already	been	checked	off.	If	this	had	not	been	done,	which	term	in	Column	II	could	not	be	eliminated	(checked	off)?	(g)	In
forming	Column	III	of	Table	6-1,	note	that	minterms	0,	1,	8,	and	9	were	combined	in	two	different	ways	to	form	–00–.	This	is	equivalent	to	looping	the	minterms	in	two	different	ways	on	the	Karnaugh	map,	as	shown.	ab	cd	ab	00	01	11	10	00	1	1	01	1	1	cd	=	ab	00	01	11	10	00	1	1	01	1	1	cd	=	11	10	1	1	01	1	1	11	11	10	10	10	(0,	8)	+	(1,	9)	01	00	11	(0,	1)
+	(8,	9)	00	(0,	1,	8,	9)	Quine-McCluskey	Method	169	(h)	Using	a	map,	find	all	of	the	prime	implicants	of	Equation	(6-2)	and	compare	your	answer	with	Equation	(6-3).	00	01	11	10	00	01	11	10	(i)	The	prime	implicants	of	f(a,	b,	c,	d)	=	Σ	m(4,	5,	6,	7,	12,	13,	14,	15)	are	to	be	found	using	the	Quine-McCluskey	method.	Column	III	is	given;	find	Column	IV
and	check	off	the	appropriate	terms	in	Column	III.	(4,	5,	6,	7)	(4,	5,	12,	13)	(4,	6,	12,	14)	(5,	7,	13,	15)	(6,	7,	14,	15)	(12,	13,	14,	15)	Column	III	01	-	–10–	–1–0	–1–1	–11–	11	-	-	Column	IV	00	01	11	10	00	01	11	10	Check	your	answer	using	a	Karnaugh	map.	3.	(a)	List	all	seven	product	term	implicants	of	F(a,	b,	c)	=	Σ	m(0,	1,	5,	7)	Which	of	these	implicants
are	prime?	Why	is	a′c	not	an	implicant?	(b)	Define	a	prime	implicant.	(c)	Why	must	every	term	in	a	minimum	sum-of-products	expression	be	a	prime	implicant?	170	Unit	6	(d)	Given	that	F(A,	B,	C,	D)	=	Σ	m(0,	1,	4,	5,	7,	10,	15),	which	of	the	following	terms	are	not	prime	implicants	and	why?	A′B′C′	4.	A′C′	BCD	ABC	AB′CD′	Study	Section	6.2,	The	Prime
Implicant	Chart.	(a)	Define	an	essential	prime	implicant.	(b)	Find	all	of	the	essential	prime	implicants	from	the	following	chart.	(0,	4)	(4,	5,	12,	13)	(13,	15)	(11,	15)	(10,	11)	a	0	–	1	1	1	b	–	1	1	–	0	c	0	0	–	1	1	d	0	–	1	1	–	0	4	5	10	11	12	13	15	××	×	×	×	×	×	×	×	×	×	×	Check	your	answer	using	a	Karnaugh	map.	(c)	Why	must	all	essential	prime	implicants	of
a	function	be	included	in	the	minimum	sum	of	products?	(d)	Complete	the	solution	of	Table	6-5.	(e)	Work	Programmed	Exercise	6.1.	(f)	Work	Problems	6.2	and	6.3.	5.	Study	Section	6.3,	Petrick’s	Method	(optional).	(a)	Consider	the	following	reduced	prime	implicant	chart	for	a	function	F:	m4	m5	m7	m13	P1	P2	P3	P4	bd	bc′	a′b	c′d	×	×	×	×	×	×	×	×	×
×	×	We	will	find	all	minimum	solutions	using	Petrick’s	method.	Let	Pi	=	1	mean	the	prime	implicant	in	row	Pi	is	included	in	the	solution.	Which	minterm	is	covered	iff	(P1	+	P3)	=	1?_________	Write	a	sum	term	which	is	1	iff	m4	is	covered._________	Quine-McCluskey	Method	171	Write	a	product-of-sum	terms	which	is	1	iff	all	m4,	m5,	m7	and	m13	are	all
covered:	P	=	__	(b)	Reduce	P	to	a	minimum	sum	of	products.	(Your	answer	should	have	four	terms,	each	one	of	the	form	Pi	Pj.)	P	=	__	If	P1P2	=	1,	which	prime	implicants	are	included	in	the	solution?_________	How	many	minimum	solutions
are	there?________	Write	out	each	solution	in	terms	of	a,	b,	c,	and	d.	6.	(1)	F	=	(2)	F	=	(3)	F	=	(4)	F	=	Study	Section	6.4,	Simplification	of	Incompletely	Specified	Functions.	(a)	Why	are	don’t-care	terms	treated	like	required	minterms	when	finding	the	prime	implicants?	(b)	Why	are	the	don’t-care	terms	not	listed	at	the	top	of	the	prime	implicant	chart
when	finding	the	minimum	solution?	(c)	Work	Problem	6.4.	(d)	Work	Problem	6.5,	and	check	your	solution	using	a	Karnaugh	map.	7.	If	you	have	LogicAid	or	a	similar	computer	program	available,	use	it	to	check	your	answers	to	some	of	the	problems	in	this	unit.	LogicAid	accepts	Boolean	functions	in	the	form	of	equations,	minterms	or	maxterms,	and
truth	tables.	It	finds	simplified	sum-of-products	and	product-of-sums	expressions	for	the	functions	using	a	modified	version	of	the	Quine-McCluskey	method	or	Espresso-II.	It	can	also	find	one	or	all	of	the	minimum	solutions	using	Petrick’s	method.	8.	Study	Section	6.5,	Simplification	Using	Map-Entered	Variables.	(a)	For	the	following	map,	find	MS0,
MS1,	and	F.	Verify	that	your	solution	for	F	is	minimum	by	using	a	four-variable	map.	A	0	1	D	1	11	1	D	10	1	X	BC	00	01	172	Unit	6	(b)	Use	the	method	of	map-entered	variables	to	find	an	expression	for	F	from	the	following	map.	Treat	C	and	C′	as	if	they	were	independent	variables.	Is	the	result	a	correct	representation	of	F?	Is	it	minimum?	A	0	B	0	1	1	C
C′	1	(c)	Work	Problem	6.6.	9.	In	this	unit	you	have	learned	a	“turn-the-crank”	type	procedure	for	finding	minimum	sum-of-products	forms	for	switching	functions.	In	addition	to	learning	how	to	“turn	the	crank”	and	grind	out	minimum	solutions,	you	should	have	learned	several	very	important	concepts	in	this	unit.	In	particular,	make	sure	you	know:	(a)
(b)	(c)	(d)	10.	What	a	prime	implicant	is	What	an	essential	prime	implicant	is	Why	the	minimum	sum-of-products	form	is	a	sum	of	prime	implicants	How	don’t-cares	are	handled	when	using	the	Quine-McCluskey	method	and	the	prime	implicant	chart	Reread	the	objectives	of	the	unit.	If	you	are	satisfied	that	you	can	meet	the	objectives,	take	the
readiness	test.	Quine-McCluskey	Method	The	Karnaugh	map	method	described	in	Unit	5	is	an	effective	way	to	simplify	switching	functions	which	have	a	small	number	of	variables.	When	the	number	of	variables	is	large	or	if	several	functions	must	be	simplified,	the	use	of	a	digital	computer	is	desirable.	The	Quine-McCluskey	method	presented	in	this
unit	provides	a	systematic	simplification	procedure	which	can	be	readily	programmed	for	a	digital	computer.	Quine-McCluskey	Method	173	The	Quine-McCluskey	method	reduces	the	minterm	expansion	(standard	sumof-products	form)	of	a	function	to	obtain	a	minimum	sum	of	products.	The	procedure	consists	of	two	main	steps:	1.	2.	Eliminate	as
many	literals	as	possible	from	each	term	by	systematically	applying	the	theorem	XY	+	XY′	=	X.	The	resulting	terms	are	called	prime	implicants.	Use	a	prime	implicant	chart	to	select	a	minimum	set	of	prime	implicants	which,	when	ORed	together,	are	equal	to	the	function	being	simplified	and	which	contain	a	minimum	number	of	literals.	6.1
Determination	of	Prime	Implicants	In	order	to	apply	the	Quine-McCluskey	method	to	determine	a	minimum	sum-ofproducts	expression	for	a	function,	the	function	must	be	given	as	a	sum	of	minterms.	(If	the	function	is	not	in	minterm	form,	the	minterm	expansion	can	be	found	by	using	one	of	the	techniques	given	in	Section	5.3.)	In	the	first	part	of	the
QuineMcCluskey	method,	all	of	the	prime	implicants	of	a	function	are	systematically	formed	by	combining	minterms.	The	minterms	are	represented	in	binary	notation	and	combined	using	XY	+	XY′	=	X	(6-1)	where	X	represents	a	product	of	literals	and	Y	is	a	single	variable.	Two	minterms	will	combine	if	they	differ	in	exactly	one	variable.	In	order	to
find	all	of	the	prime	implicants,	all	possible	pairs	of	minterms	should	be	compared	and	combined	whenever	possible.	To	reduce	the	required	number	of	comparisons,	the	binary	minterms	are	sorted	into	groups	according	to	the	number	of	1’s	in	each	term.	Thus,	f(a,	b,	c,	d)	=	Σ	m(0,	1,	2,	5,	6,	7,	8,	9,	10,	14)	is	represented	by	the	following	list	of
minterms:	group	0	0	0000	group	1	|	1	0001	2	0010	8	1000	5	6	group	2	&	9	10	7	group	3	e	14	0101	0110	1001	1010	0111	1110	(6-2)	174	Unit	6	In	this	list,	the	term	in	group	0	has	zero	1’s,	the	terms	in	group	1	have	one	1,	those	in	group	2	have	two	1’s,	and	those	in	group	3	have	three	1’s.	Two	terms	can	be	combined	if	they	differ	in	exactly	one
variable.	Comparison	of	terms	in	nonadjacent	groups	is	unnecessary	because	such	terms	will	always	differ	in	at	least	two	variables	and	cannot	be	combined	using	XY	+	XY′	=	X.	Similarly,	the	comparison	of	terms	within	a	group	is	unnecessary	because	two	terms	with	the	same	number	of	1’s	must	differ	in	at	least	two	variables.	Thus,	only	terms	in
adjacent	groups	must	be	compared.	First,	we	will	compare	the	term	in	group	0	with	all	of	the	terms	in	group	1.	Terms	0000	and	0001	can	be	combined	to	eliminate	the	fourth	variable,	which	yields	000–.	Similarly,	0	and	2	combine	to	form	00–0	(a′b′d′),	and	0	and	8	combine	to	form	–000	(b′c′d′).	The	resulting	terms	are	listed	in	Column	II	of	Table	6-1.
Whenever	two	terms	combine,	the	corresponding	decimal	numbers	differ	by	a	power	of	2	(1,	2,	4,	8,	etc.).	This	is	true	because	when	the	binary	representations	differ	in	exactly	one	column	and	if	we	subtract	these	binary	representations,	we	get	a	1	only	in	the	column	in	which	the	difference	exists.	A	binary	number	with	a	1	in	exactly	one	column	is	a
power	of	2.	Column	I	TABLE	6-1	Determination	of	Prime	Implicants	group	0	©	Cengage	Learning	2014	group	1	Column	II	0	1	2	8	0000	0001	0010	1000	✓	✓	✓	✓	group	2	5	6	9	10	0101	0110	1001	1010	✓	✓	✓	✓	group	3	7	0111	✓	14	1110	✓	Column	III	0,	1	000–	✓	0,	2	00–0	✓	0,	8	–000	✓	1,	5	0–01	1,	9	2,	6	2,	10	8,	9	8,	10	5,	7	6,	7	6,	14	10,	14	–001	0–10
–010	100–	10–0	01–1	011–	–110	1–10	✓	✓	✓	✓	✓	0,	1,	8,	9	0,	2,	8,	10	0,	8,	1,	9	0,	8,	2,	10	2,	6,	10,	14	2,	10,	6,	14	–00–	–0–0	–00–	–0–0	-	-	10	-	-	10	✓	✓	Because	the	comparison	of	group	0	with	groups	2	and	3	is	unnecessary,	we	proceed	to	compare	terms	in	groups	1	and	2.	Comparing	term	1	with	all	terms	in	group	2,	we	find	that	it	combines	with	5	and	9
but	not	with	6	or	10.	Similarly,	term	2	combines	only	with	6	and	10,	and	term	8	only	with	9	and	10.	The	resulting	terms	are	listed	in	Column	II.	Each	time	a	term	is	combined	with	another	term,	it	is	checked	off.	A	term	may	be	used	more	than	once	because	X	+	X	=	X.	Even	though	two	terms	have	already	been	combined	with	other	terms,	they	still	must
be	compared	and	combined	if	possible.	This	is	necessary	because	the	resultant	term	may	be	needed	to	form	the	Quine-McCluskey	Method	175	minimum	sum	solution.	At	this	stage,	we	may	generate	redundant	terms,	but	these	redundant	terms	will	be	eliminated	later.	We	finish	with	Column	I	by	comparing	terms	in	groups	2	and	3.	New	terms	are
formed	by	combining	terms	5	and	7,	6	and	7,	6	and	14,	and	10	and	14.	Note	that	the	terms	in	Column	II	have	been	divided	into	groups,	according	to	the	number	of	1’s	in	each	term.	Again,	we	apply	XY	+	XY′	=	X	to	combine	pairs	of	terms	in	Column	II.	In	order	to	combine	two	terms,	the	terms	must	have	the	same	variables,	and	the	terms	must	differ	in
exactly	one	of	these	variables.	Thus,	it	is	necessary	only	to	compare	terms	which	have	dashes	(missing	variables)	in	corresponding	places	and	which	differ	by	exactly	one	in	the	number	of	1’s.	Terms	in	the	first	group	in	Column	II	need	only	be	compared	with	terms	in	the	second	group	which	have	dashes	in	the	same	places.	Term	000–	(0,	1)	combines
only	with	term	100–	(8,	9)	to	yield	–00–.	This	is	algebraically	equivalent	to	a′b′c	+	ab′c′	=	b′c′.	The	resulting	term	is	listed	in	Column	III	along	with	the	designation	0,	1,	8,	9	to	indicate	that	it	was	formed	by	combining	minterms	0,	1,	8,	and	9.	Term	(0,	2)	combines	only	with	(8,	10),	and	term	(0,	8)	combines	with	both	(1,	9)	and	(2,		10).	Again,	the	terms
which	have	been	combined	are	checked	off.	Comparing	terms	from	the	second	and	third	groups	in	Column	II,	we	find	that	(2,	6)	combines	with	(10,	14),	and	(2,	10)	combines	with	(6,	14).	Note	that	there	are	three	pairs	of	duplicate	terms	in	Column	III.	These	duplicate	terms	were	formed	in	each	case	by	combining	the	same	set	of	four	minterms	in	a
different	order.	After	deleting	the	duplicate	terms,	we	compare	terms	from	the	two	groups	in	Column	III.	Because	no	further	combination	is	possible,	the	process	terminates.	In	general,	we	would	keep	comparing	terms	and	forming	new	groups	of	terms	and	new	columns	until	no	more	terms	could	be	combined.	The	terms	which	have	not	been	checked
off	because	they	cannot	be	combined	with	other	terms	are	called	prime	implicants.	Because	every	minterm	has	been	included	in	at	least	one	of	the	prime	implicants,	the	function	is	equal	to	the	sum	of	its	prime	implicants.	In	this	example	we	have	f	=	a′c′d	+	a′bd	+	a′bc	+	(1,	5)	(5,	7)	(6,	7)	b′c′	+	(0,	1,	8,	9)	b′d′	+	(0,	2,	8,	10)	cd′	(2,	6,	10,	14)	(6-3)	In
this	expression,	each	term	has	a	minimum	number	of	literals,	but	the	number	of	terms	is	not	minimum.	Using	the	consensus	theorem	to	eliminate	redundant	terms	yields	f	=	a′bd	+	b′c′	+	cd′	(6-4)	which	is	the	minimum	sum-of-products	expression	for	f	.	Section	6.2	discusses	a	better		method	of	eliminating	redundant	prime	implicants	using	a	prime
implicant	chart.	Next,	we	will	define	implicant	and	prime	implicant	and	relate	these	terms	to	the	Quine-McCluskey	method.	176	Unit	6	Definition	Given	a	function	F	of	n	variables,	a	product	term	P	is	an	implicant	of	F	iff	for	every	combination	of	values	of	the	n	variables	for	which	P	=	1,	F	is	also	equal	to	1.	In	other	words,	if	for	some	combination	of
values	of	the	variables,	P	=	1	and	F	=	0,	then	P	is	not	an	implicant	of	F.	For	example,	consider	the	function	F(a,	b,	c)	=	a′b′c′	+	ab′c′	+	ab′c	+	abc	=	b′c′	+	ac	(6-5)	If	a′b′c′	=	1,	then	F	=	1;	if	ac	=	1,	then	F	=	1;	etc.	Hence,	the	terms	a′b′c′,	ac,	etc.,	are	implicants	of	F.	In	this	example,	bc	is	not	an	implicant	of	F	because	when	a	=	0	and	b	=	c	=	1,	bc	=	1
and	F	=	0.	In	general,	if	F	is	written	in	sum-of-products	form,	every	product	term	is	an	implicant.	Every	minterm	of	F	is	also	an	implicant	of	F,	and	so	is	any	term	formed	by	combining	two	or	more	minterms.	For	example,	in	Table	6-1,	all	of	the	terms	listed	in	any	of	the	columns	are	implicants	of	the	function	given	in	Equation	(6-2).	Definition	A	prime
implicant	of	a	function	F	is	a	product	term	implicant	which	is	no	longer	an	implicant	if	any	literal	is	deleted	from	it.	In	Equation	(6-5),	the	implicant	a′b′c′	is	not	a	prime	implicant	because	a′	can	be	eliminated,	and	the	resulting	term	(b′c′)	is	still	an	implicant	of	F.	The	implicants	b′c′	and	ac	are	prime	implicants	because	if	we	delete	a	literal	from	either
term,	the	term	will	no	longer	be	an	implicant	of	F.	Each	prime	implicant	of	a	function	has	a	minimum	number	of	literals	in	the	sense	that	no	more	literals	can	be	eliminated	from	it	by	combining	it	with	other	terms.	The	Quine-McCluskey	method,	as	previously	illustrated,	finds	all	of	the	product	term	implicants	of	a	function.	The	implicants	which	are
nonprime	are	checked	off	in	the	process	of	combining	terms	so	that	the	remaining	terms	are	prime	implicants.	A	minimum	sum-of-products	expression	for	a	function	consists	of	a	sum	of	some	(but	not	necessarily	all)	of	the	prime	implicants	of	that	function.	In	other	words,	a	sum-of-products	expression	which	contains	a	term	which	is	not	a	prime
implicant	cannot	be	minimum.	This	is	true	because	the	nonprime	term	does	not	contain	a	minimum	number	of	literals—it	can	be	combined	with	additional	minterms	to	form	a	prime	implicant	which	has	fewer	literals	than	the	nonprime	term.	Any	nonprime	term	in	a	sum-of-products	expression	can	thus	be	replaced	with	a	prime	implicant,	which
reduces	the	number	of	literals	and	simplifies	the	expression.	6.2	The	Prime	Implicant	Chart	Given	all	the	prime	implicants	of	a	function,	the	prime	implicant	chart	can	be	used	to	select	a	minimum	set	of	prime	implicants.	The	minterms	of	the	function	are	listed	across	the	top	of	the	chart,	and	the	prime	implicants	are	listed	down	the	side.	Quine-
McCluskey	Method	177	A	prime	implicant	is	equal	to	a	sum	of	minterms,	and	the	prime	implicant	is	said	to	cover	these	minterms.	If	a	prime	implicant	covers	a	given	minterm,	an	X	is	placed	at	the	intersection	of	the	corresponding	row	and	column.	Table	6-2	shows	the	prime	implicant	chart	derived	from	Table	6-1.	All	of	the	prime	implicants	(terms
which	have	not	been	checked	off	in	Table	6-1)	are	listed	on	the	left.	In	the	first	row,	X’s	are	placed	in	columns	0,	1,	8,	and	9,	because	prime	implicant	b′c′	was	formed	from	the	sum	of	minterms	0,	1,	8,	and	9.	Similarly,	X’s	are	placed	in	columns	0,	2,	8,	and	10	opposite	the	prime	implicant	b′d′	and	so	forth.	TABLE	6-2	Prime	Implicant	Chart	©	Cengage
Learning	2014	(0,	1,	8,	9)	(0,	2,	8,	10)	(2,	6,	10,	14)	(1,	5)	(5,	7)	(6,	7)	b′c′	b′d′	cd′	a′c′d	a′bd	a′bc	0	1	2	5	6	7	8	9	10	14	××	×	⊗	×	×	×	×	×	×	×	⊗	×	×	×	×	×	×	If	a	minterm	is	covered	by	only	one	prime	implicant,	then	that	prime	implicant	is	called	an	essential	prime	implicant	and	must	be	included	in	the	minimum	sum	of	products.	Essential	prime
implicants	are	easy	to	find	using	the	prime	implicant	chart.	If	a	given	column	contains	only	one	X,	then	the	corresponding	row	is	an	essential	prime	implicant.	In	Table	6-2,	columns	9	and	14	each	contain	one	X,	so	prime	implicants	b′c′	and	cd′	are	essential.	Each	time	a	prime	implicant	is	selected	for	inclusion	in	the	minimum	sum,	the	corresponding
row	should	be	crossed	out.	After	doing	this,	the	columns	which	correspond	to	all	minterms	covered	by	that	prime	implicant	should	also	be	crossed	out.	Table	6-3	shows	the	resulting	chart	when	the	essential	prime	implicants	and	the	corresponding	rows	and	columns	of	Table	6-2	are	crossed	out.	A	minimum	set	of	prime	implicants	must	now	be	chosen
to	cover	the	remaining	columns.	In	this	example,	a′bd	covers	the	remaining	two	columns,	so	it	is	chosen.	The	resulting	minimum	sum	of	products	is	f	=	b′c′	+	cd′	+	a′bd	which	is	the	same	as	Equation	(6-4).	Note	that	even	though	the	term	a′bd	is	included	in	the	minimum	sum	of	products,	a′bd	is	not	an	essential	prime	implicant.	It	is	the	sum	of
minterms	m5	and	m7;	m5	is	also	covered	by	a′c′d,	and	m7	is	also	covered	by	a′bc.	TABLE	6-3	©	Cengage	Learning	2014	(0,	1,	8,	9)	(0,	2,	8,	10)	(2,	6,	10,	14)	(1,	5)	(5,	7)	(6,	7)	b′c′	b′d′	cd′	a′c′d	a′bd	a′bc	0	1	2	5	6	7	8	9	10	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	14	×	178	Unit	6	When	selecting	prime	implicants	for	a	minimum	sum,	the	essential	prime
implicants	are	chosen	first	because	all	essential	prime	implicants	must	be	included	in	every	minimum	sum.	After	the	essential	prime	implicants	have	been	chosen,	the	minterms	which	they	cover	can	be	eliminated	from	the	prime	implicant	chart	by	crossing	out	the	corresponding	columns.	If	the	essential	prime	implicants	do	not	cover	all	of	the
minterms,	then	additional	nonessential	prime	implicants	are	needed.	In	simple	cases,	the	nonessential	prime	implicants	needed	to	form	the	minimum	solution	may	be	selected	by	trial	and	error.	For	larger	prime	implicant	charts,	additional	procedures	for	chart	reduction	can	be	employed.1	(Also,	see	Problem	6.21.)	Some	functions	have	two	or	more
minimum	sum-of-products	expressions,	each	having	the	same	number	of	terms	and	literals.	The	next	example	shows	such	a	function.	Example	A	prime	implicant	chart	which	has	two	or	more	X’s	in	every	column	is	called	a	cyclic	prime	implicant	chart.	The	following	function	has	such	a	chart:	F	=	Σ	m(0,	1,	2,	5,	6,	7)	(6-6)	Derivation	of	prime	implicants:
0	1	2	5	6	7	000	001	010	101	110	111	✓	✓	✓	✓	✓	✓	0,	1	0,	2	1,	5	2,	6	5,	7	6,	7	00−	0−0	−01	−10	1−1	11−	Table	6-4	shows	the	resulting	prime	implicant	chart.	All	columns	have	two	X’s,	so	we	will	proceed	by	trial	and	error.	Both	(0,	1)	and	(0,	2)	cover	column	0,	so	we	will	try	(0,	1).	After	crossing	out	row	(0,	1)	and	columns	0	and	1,	we	examine	column
2,	which	is	covered	by	(0,	2)	and	(2,	6).	The	best	choice	is	(2,	6)	because	it	covers	two	of	the	remaining	columns	while	(0,	2)	covers	only	one	of	the	remaining	columns.	After	crossing	out	row	(2,	6)	and	columns	2	and	6,	we	see	that	(5,	7)	covers	the	remaining	columns	and	completes	the	solution.	Therefore,	one	solution	is	F	=	a′b′	+	bc′	+	ac.	TABLE	6-4
➀	→	(0,	1)	a′b′	©	Cengage	Learning	2014	➁	➂	1	(0,	2)	(1,	5)	→	(2,	6)	→	(5,	7)	(6,	7)	a′c′	b′c	bc′	ac	ab	0	1	2	5	6	7	×	×	×	×	×	×	×	×	×	×	××	For	a	discussion	of	such	procedures,	see	E.	J.	McCluskey,	Logic	Design	Principles	(Prentice-Hall,	1986).	Quine-McCluskey	Method	179	However,	we	are	not	guaranteed	that	this	solution	is	minimum.	We	must	go
back	and	solve	the	problem	over	again	starting	with	the	other	prime	implicant	that	covers	column	0.	The	resulting	table	(Table	6-5)	is	TABLE	6-5	©	Cengage	Learning	2014	P1	P2	P3	P4	P5	P6	(0,	1)	(0,	2)	(1,	5)	(2	6)	(5,	7)	(6,	7)	a′b′	a′c′	b′c	bc′	ac	ab	0	1	2	5	6	7	×	×	×	×	×	×	×	×	×	×	×	×	Finish	the	solution	and	show	that	F	=	a′c′	+	b′c	+	ab.	Because	this
has	the	same	number	of	terms	and	same	number	of	literals	as	the	expression	for	F	derived	in	Table	6-4,	there	are	two	minimum	sum-of-products	solutions	to	this	problem.	Compare	these	two	minimum	solutions	for	Equation	(6-6)	with	the	solutions	obtained	in	Figure	5-9	using	Karnaugh	maps.	Note	that	each	minterm	on	the	map	can	be	covered	by	two
different	loops.	Similarly,	each	column	of	the	prime	implicant	chart	(Table	6-4)	has	two	X’s,	indicating	that	each	minterm	can	be	covered	by	two	different	prime	implicants.	6.3	Petrick’s	Method	Petrick’s	method	is	a	technique	for	determining	all	minimum	sum-of-products	solutions	from	a	prime	implicant	chart.	The	example	shown	in	Tables	6-4	and	6-5
has	two	minimum	solutions.	As	the	number	of	variables	increases,	the	number	of	prime	implicants	and	the	complexity	of	the	prime	implicant	chart	may	increase	significantly.	In	such	cases,	a	large	amount	of	trial	and	error	may	be	required	to	find	the	minimum	solution(s).	Petrick’s	method	is	a	more	systematic	way	of	finding	all	minimum	solutions	from
a	prime	implicant	chart	than	the	method	used	previously.	Before	applying	Petrick’s	method,	all	essential	prime	implicants	and	the	minterms	they	cover	should	be	removed	from	the	chart.	We	will	illustrate	Petrick’s	method	using	Table	6-5.	First,	we	will	label	the	rows	of	the	table	P1,	P2,	P3,	etc.	We	will	form	a	logic	function,	P,	which	is	true	when	all	of
the	minterms	in	the	chart	have	been	covered.	Let	P1	be	a	logic	variable	which	is	true	when	the	prime	implicant	in	row	P1	is	included	in	the	solution,	P2	be	a	logic	variable	which	is	true	when	the	prime	implicant	in	row	P2	is	included	in	the	solution,	etc.	Because	column	0	has	X’s	in	rows	P1	and	P2,	we	must	choose	row	P1	or	P2	in	order	to	cover
minterm	0.	Therefore,	the	expression	(P1	+	P2)	must	be	true.	In	order	to	cover	minterm	1,	we	must	choose	row	P1	or	P3;	therefore,	(P1	+	P3)	must	be	true.	In	order	180	Unit	6	to	cover	minterm	2,	(P2	+	P4)	must	be	true.	Similarly,	in	order	to	cover	minterms	5,	6,	and	7,	the	expressions	(P3	+	P5),	(P4	+	P6)	and	(P5	+	P6)	must	be	true.	Because	we
must	cover	all	of	the	minterms,	the	following	function	must	be	true:	P	=	(P1	+	P2)(P1	+	P3)(P2	+	P4)(P3	+	P5)(P4	+	P6)(P5	+	P6)	=	1	The	expression	for	P	in	effect	means	that	we	must	choose	row	P1	or	P2,	and	row	P1	or	P3,	and	row	P2	or	P4,	etc.	The	next	step	is	to	reduce	P	to	a	minimum	sum	of	products.	This	is	easy	because	there	are	no
complements.	First,	we	multiply	out,	using	(X	+	Y)(X	+	Z)	=	X	+	YZ	and	the	ordinary	distributive	law:	P	=	(P1	+	P2P3)(P4	+	P2P6)(P5	+	P3P6)	=	(P1P4	+	P1P2P6	+	P2P3P4	+	P2P3P6)(P5	+	P3P6)	=	P1P4P5	+	P1P2P5P6	+	P2P3P4P5	+	P2P3P5P6	+	P1P3P4P6	+	P1P2P3P6	+	P2P3P4P6	+	P2P3P6	Next,	we	use	X	+	XY	=	X	to	eliminate	redundant	terms
from	P,	which	yields	P	=	P1P4P5	+	P1P2P5P6	+	P2P3P4P5	+	P1P3P4P6	+	P2P3P6	Because	P	must	be	true	(P	=	1)	in	order	to	cover	all	of	the	minterms,	we	can	translate	the	equation	back	into	words	as	follows.	In	order	to	cover	all	of	the	minterms,	we	must	choose	rows	P1	and	P4	and	P5,	or	rows	P1	and	P2	and	P5	and	P6,	or	.	.	.	or	rows	P2	and	P3
and	P6.	Although	there	are	five	possible	solutions,	only	two	of	these	have	the	minimum	number	of	rows.	Thus,	the	two	solutions	with	the	minimum	number	of	prime	implicants	are	obtained	by	choosing	rows	P1,	P4,	and	P5	or	rows	P2,	P3,	and	P6.	The	first	choice	leads	to	F	=	a′b′	+	bc′	+	ac,	and	the	second	choice	to	F	=	a′c′	+	b′c	+	ab,	which	are	the
two	minimum	solutions	derived	in	Section	6.2.	In	summary,	Petrick’s	method	is	as	follows:	1.	2.	3.	4.	5.	6.	Reduce	the	prime	implicant	chart	by	eliminating	the	essential	prime	implicant	rows	and	the	corresponding	columns.	Label	the	rows	of	the	reduced	prime	implicant	chart	P1,	P2,	P3,	etc.	Form	a	logic	function	P	which	is	true	when	all	columns	are
covered.	P	consists	of	a	product	of	sum	terms,	each	sum	term	having	the	form	(Pi0	+	Pi1	+	·	·	·),	where	Pi0,	Pi1	.	.	.	represent	the	rows	which	cover	column	i.	Reduce	P	to	a	minimum	sum	of	products	by	multiplying	out	and	applying	X	+	XY	=	X.	Each	term	in	the	result	represents	a	solution,	that	is,	a	set	of	rows	which	covers	all	of	the	minterms	in	the
table.	To	determine	the	minimum	solutions	(as	defined	in	Section	5.1),	find	those	terms	which	contain	a	minimum	number	of	variables.	Each	of	these	terms	represents	a	solution	with	a	minimum	number	of	prime	implicants.	For	each	of	the	terms	found	in	step	5,	count	the	number	of	literals	in	each	prime	implicant	and	find	the	total	number	of	literals.
Choose	the	term	or	terms	which	correspond	to	the	minimum	total	number	of	literals,	and	write	out	the	corresponding	sums	of	prime	implicants.	Quine-McCluskey	Method	181	The	application	of	Petrick’s	method	is	very	tedious	for	large	charts,	but	it	is	easy	to	implement	on	a	computer.	6.4	Simplification	of	Incompletely	Specified	Functions	Given	an
incompletely	specified	function,	the	proper	assignment	of	values	to	the	don’t-care	terms	is	necessary	in	order	to	obtain	a	minimum	form	for	the	function.	In	this	section,	we	will	show	how	to	modify	the	Quine-McCluskey	method	in	order	to	obtain	a	minimum	solution	when	don’t-care	terms	are	present.	In	the	process	of	finding	the	prime	implicants,	we
will	treat	the	don’t-care	terms	as	if	they	were	required	minterms.	In	this	way,	they	can	be	combined	with	other	minterms	to	eliminate	as	many	literals	as	possible.	If	extra	prime	implicants	are	generated	because	of	the	don’t-cares,	this	is	correct	because	the	extra	prime	implicants	will	be	eliminated	in	the	next	step	anyway.	When	forming	the	prime
implicant	chart,	the	don’tcares	are	not	listed	at	the	top.	This	way,	when	the	prime	implicant	chart	is	solved,	all	of	the	required	minterms	will	be	covered	by	one	of	the	selected	prime	implicants.	However,	the	don’t-care	terms	are	not	included	in	the	final	solution	unless	they	have	been	used	in	the	process	of	forming	one	of	the	selected	prime	implicants.
The	following	example	of	simplifying	an	incompletely	specified	function	should	clarify	the	procedure.	F(A,	B,	C,	D)	=	Σ	m(2,	3,	7,	9,	11,	13)	+	Σ	d(1,	10,	15)	(the	terms	following	d	are	don’t-care	terms)	The	don’t-care	terms	are	treated	like	required	minterms	when	finding	the	prime	implicants:	1	2	3	9	10	7	11	13	5	0001	0010	0011	1001	1010	0111	1011
1101	1111	✓	✓	✓	✓	✓	✓	✓	✓	✓	(1,	3)	00–1	✓	(1,	9)	–001	✓	(2,	3)	001–	✓	(2,	10)	–010	✓	(3,	7)	0–11	✓	(3,	11)	–011	✓	(9,	11)	10–1	✓	(9,	13)	1–01	✓	(10,	11)	101–	✓	(7,	15)	–111	✓	(11,	15)	1–11	✓	(13,	15)	11–1	✓	(1,	3,	9,	11)	–0–1	(2,	3,	10,11)	–01–	(3,	7,	11,	15)	-	-	11	(9,	11,	13,	15)	1	-	-	1	182	Unit	6	The	don’t-care	columns	are	omitted	when	forming	the
prime	implicant	chart:	2	3	(1,	3,	9,	11)	*(2,	3,	10,	11)	*(3,	7,	11,	15)	*(9,	11,	13,	15)	7	9	11	13	×	×	×	×	×	×	×	×	×	×	×	F	=	B′C	+	CD	+	AD	×	*Indicates	an	essential	prime	implicant.	Note	that	although	the	original	function	was	incompletely	specified,	the	final	simplified	expression	for	F	is	defined	for	all	combinations	of	values	for	A,	B,	C,	and	D	and	is
therefore	completely	specified.	In	the	process	of	simplification,	we	have	automatically	assigned	values	to	the	don’t-cares	in	the	original	truth	table	for	F.	If	we	replace	each	term	in	the	final	expression	for	F	by	its	corresponding	sum	of	minterms,	the	result	is	F	=	(m2	+	m3	+	m10	+	m11)	+	(m3	+	m7	+	m11	+	m15)	+	(m9	+	m11	+	m13	+	m15)
Because	m10	and	m15	appear	in	this	expression	and	m1	does	not,	this	implies	that	the	don’t-care	terms	in	the	original	truth	table	for	F	have	been	assigned	as	follows:	for	ABCD	=	0001,	F	=	0;	for	1010,	F	=	1;	for	1111,	F	=	1	6.5	Simplification	Using	Map-Entered	Variables	Although	the	Quine-McCluskey	method	can	be	used	with	functions	with	a	fairly
large	number	of	variables,	it	is	not	very	efficient	for	functions	that	have	many	variables	and	relatively	few	terms.	Some	of	these	functions	can	be	simplified	by	using	a	modification	of	the	Karnaugh	map	method.	By	using	map-entered	variables,	Karnaugh	map	techniques	can	be	extended	to	simplify	functions	with	more	than	four	or	five	variables.	Figure
6-1(a)	shows	a	four-variable	map	with	two	additional	variables	entered	in	the	squares	in	the	map.	When	E	appears	in	a	square,	this	means	FIGURE	6-1	Use	of	MapEntered	Variables	©	Cengage	Learning	2014	AB	CD	AB	00	01	11	00	1	01	X	E	X	11	1	E	1	10	1	10	CD	AB	00	01	11	00	1	F	01	X	X	1	11	1	1	X	10	1	10	CD	AB	00	01	11	00	X	01	X	1	X	1	11	X	1	X	X
10	X	10	CD	00	01	11	10	00	X	01	X	X	1	X	11	X	X	X	X	10	X	X	G	E=F=0	MS0	=	A′B′	+	ACD	E	=	1,	F	=	0	MS1	=	A′D	E	=	0,	F	=	1	MS2	=	AD	(a)	(b)	(c)	(d)	Quine-McCluskey	Method	183	that	if	E	=	1,	the	corresponding	minterm	is	present	in	the	function	G,	and	if	E	=	0,	the	minterm	is	absent.	Thus,	the	map	represents	the	six-variable	function	G(A,	B,	C,	D,
E,	F)	=	m0	+	m2	+	m3	+	Em5	+	Em7	+	Fm9	+	m11	+	m15	(+	don’t-care	terms)	where	the	minterms	are	minterms	of	the	variables	A,	B,	C,	and	D.	Note	that	m9	is	present	in	G	only	when	F	=	1.	We	will	now	use	a	three-variable	map	to	simplify	the	function:	F(A,	B,	C,	D)	=	A′B′C	+	A′BC	+	A′BC′D	+	ABCD	+	(AB′C)	where	the	AB′C	is	a	don’t-care	term.
Because	D	appears	in	only	two	terms,	we	will	choose	it	as	a	map-entered	variable,	which	leads	to	Figure	6-2(a).	We	will	simplify	F	by	first	considering	D	=	0	and	then	D	=	1.	First	set	D	=	0	on	the	map,	and	F	reduces	to	A′C.	Setting	D	=	1	leads	to	the	map	of	Figure	6-2(b).	The	two	1’s	on	the	original	map	have	already	been	covered	by	the	term	A′C,	so
they	are	changed	to	X’s	because	we	do	not	care	whether	they	are	covered	again	or	not.	From	Figure	6-2(b),	when	D	=	1.	Thus,	the	expression	F	=	A′C	+	D(C	+	A′B)	=	A′C	+	CD	+	A′BD	gives	the	correct	value	of	F	both	when	D	=	0	and	when	D	=	1.	This	is	a	minimum	expression	for	F,	as	can	be	verified	by	plotting	the	original	function	on	a	four-variable
map;	see	Figure	6-2(c).	Next,	we	will	discuss	a	general	method	of	simplifying	functions	using	map-entered	variables.	In	general,	if	a	variable	Pi	is	placed	in	square	mj	of	a	map	of	function	F,	this	means	that	F	=	1	when	Pi	=	1,	and	the	variables	are	chosen	so	that	mj	=	1.	Given	a	map	with	variables	P1,	P2,	.	.	.	entered	into	some	of	the	squares,	the
minimum	sum-ofproducts	form	of	F	can	be	found	as	follows:	Find	a	sum-of-products	expression	for	F	of	the	form	F	=	MS0	+	P1MS1	+	P2MS2	+	·	·	·	where	MS0	is	the	minimum	sum	obtained	by	setting	P1	=	P2	=	·	·	·	=	0.	FIGURE	6-2	Simplification	Using	a	Map-Entered	Variable	©	Cengage	Learning	2014	A	BC	A	0	1	00	BC	DA	0	1	00	BC	00	01	11	10	X
X	1	1	1	00	01	1	X	01	X	X	01	1	11	1	D	11	X	1	11	1	10	D	10	1	(a)	1	10	(b)	(c)	184	Unit	6	MS1	is	the	minimum	sum	obtained	by	setting	P1	=	1,	Pj	=	0	(j	≠	1),	and	replacing	all	1’s	on	the	map	with	don’t-cares.	MS2	is	the	minimum	sum	obtained	by	setting	P2	=	1,	Pj	=	0	(j	≠	2)	and	replacing	all	1’s	on	the	map	with	don’t-cares.	(Corresponding	minimum
sums	can	be	found	in	a	similar	way	for	any	remaining	map-entered	variables.)	The	resulting	expression	for	F	will	always	be	a	correct	representation	of	F.	This	expression	will	be	minimum	provided	that	the	values	of	the	map-entered	variables	can	be	assigned	independently.	On	the	other	hand,	the	expression	will	not	generally	be	minimum	if	the
variables	are	not	independent	(for	example,	if	P1	=	P2′).	For	the	example	of	Figure	6-1(a),	maps	for	finding	MS0,	MS1,	and	MS2	are	shown	in	Figures	6-1(b),	(c),	and	(d),	where	E	corresponds	to	P1	and	F	corresponds	to	P2.	The	resulting	expression	is	a	minimum	sum	of	products	for	G:	G	=	A′B′	+	ACD	+	EA′D	+	FAD	After	some	practice,	it	should	be
possible	to	write	the	minimum	expression	directly	from	the	original	map	without	first	plotting	individual	maps	for	each	of	the	minimum	sums.	6.6	Conclusion	We	have	discussed	four	methods	for	reducing	a	switching	expression	to	a	minimum	sumof-products	or	a	minimum	product-of-sums	form:	algebraic	simplification,	Karnaugh	maps,	Quine-
McCluskey	method,	and	Petrick’s	method.	Many	other	methods	of	simplification	are	discussed	in	the	literature,	but	most	of	these	methods	are	based	on	variations	or	extensions	of	the	Karnaugh	map	or	Quine-McCluskey	techniques.	Karnaugh	maps	are	most	useful	for	functions	with	three	to	five	variables.	The	Quine-McCluskey	technique	can	be	used
with	a	high-speed	digital	computer	to	simplify	functions	with	up	to	15	or	more	variables.	Such	computer	programs	are	of	greatest	value	when	used	as	part	of	a	computer-aided	design	(CAD)	package	that	assists	with	deriving	the	equations	as	well	as	implementing	them.	Algebraic	simplification	is	still	valuable	in	many	cases,	especially	when	different
forms	of	the	expressions	are	required.	For	problems	with	a	large	number	of	variables	and	a	small	number	of	terms,	it	may	be	impossible	to	use	the	Karnaugh	map,	and	the	Quine-McCluskey	method	may	be	very	cumbersome.	In	such	cases,	algebraic	simplification	may	be	the	easiest	method	to	use.	In	situations	where	a	minimum	solution	is	not
required	or	where	obtaining	a	minimum	solution	requires	too	much	computation	to	be	practical,	heuristic	procedures	may	be	used	to	simplify	switching	functions.	One	of	the	more	popular	heuristic	procedures	is	the	Espresso-II	method,2	which	can	produce	near	minimum	solutions	for	a	large	class	of	problems.	The	minimum	sum-of-products	and
minimum	product-of-sums	expressions	we	have	derived	lead	directly	to	two-level	circuits	that	use	a	minimum	number	of	AND	2	This	method	is	described	in	R.	K.	Brayton	et	al.,	Logic	Minimization	Algorithms	for	VLSI	Synthesis	(Kluwer	Academic	Publishers,	1984).	Quine-McCluskey	Method	185	and	OR	gates	and	have	a	minimum	number	of	gate
inputs.	As	discussed	in	Unit	7,	these	circuits	are	easily	transformed	into	circuits	that	contain	NAND	or	NOR	gates.	These	minimum	expressions	may	also	be	useful	when	designing	with	some	types	of	array	logic,	as	discussed	in	Unit	9.	However,	many	situations	exist	where	minimum	expressions	do	not	lead	to	the	best	design.	For	practical	designs,
many	other	factors	must	be	considered,	such	as	the	following:	What	is	the	maximum	number	of	inputs	a	gate	can	have?	What	is	the	maximum	number	of	outputs	a	gate	can	drive?	Is	the	speed	with	which	signals	propagate	through	the	circuit	fast	enough?	How	can	the	number	of	interconnections	in	the	circuit	be	reduced?	Does	the	design	lead	to	a
satisfactory	circuit	layout	on	a	printed	circuit	board	or	on	a	silicon	chip?	Until	now,	we	have	considered	realizing	only	one	switching	function	at	a	time.	Unit	7	describes	design	techniques	and	Unit	9	describes	components	that	can	be	used	when	several	functions	must	be	realized	by	a	single	circuit.	Programmed	Exercise	6.1	Cover	the	answers	to	this
exercise	with	a	sheet	of	paper	and	slide	it	down	as	you	check	your	answers.	Find	a	minimum	sum-of-products	expression	for	the	following	function:	f(A,	B,	C,	D,	E)	=	Σ	m(0,	2,	3,	5,	7,	9,	11,	13,	14,	16,	18,	24,	26,	28,	30)	Translate	each	decimal	minterm	into	binary	and	sort	the	binary	terms	into	groups	according	to	the	number	of	1’s	in	each	term.
Answer:	0	2	16	3	5	9	18	24	7	11	13	14	26	28	30	00000	✓	0,2	00010	✓	10000	00011	00101	01001	10010	11000	00111	01011	01101	01110	11010	11100	11110	000-0	Compare	pairs	of	terms	in	adjacent	groups	and	combine	terms	where	possible.	(Check	off	terms	which	have	been	combined.)	186	Unit	6	Answer:	0	2	16	3	5	9	18	24	7	11	13	14	26	28	30
00000	00010	10000	00011	00101	01001	10010	11000	00111	01101	01101	01110	11010	11100	11110	0,	2	✓	0,	16	✓	2,	3	✓	2,	18	✓	✓	16,	18	✓	16,	24	3,	7	✓	3,	11	✓	5,	7	✓	✓	5,	13	✓	9,	11	9,	13	✓	✓	18,	26	✓	24,	26	✓	24,	28	14,	30	26,	30	28,	30	000−0	✓	−0000	0001−	−0010	100−0	✓	1−000	00−11	0−011	001−1	0−101	010−1	01−01	1−010	110−0
11−00	−1110	11−10	111−0	0,	2,	16,	18	−00−0	Now,	compare	pairs	of	terms	in	adjacent	groups	in	the	second	column	and	combine	terms	where	possible.	(Check	off	terms	which	have	been	combined.)	Check	your	work	by	noting	that	each	new	term	can	be	formed	in	two	ways.	(Cross	out	duplicate	terms.)	Answer:	(third	column)	0,	2,	16,	18	–00–0	16,
18,	24,	26	1–0–0	24,	26,	28,	30	11	--	0	(check	off	(0,	2),	(16,	18),	(0,	16),	and	(2,	18))	(check	off	(16,	18),	(24,	26),	(16,	24),	and	(18,	26))	(check	off	(24,	26),	(28,	30),	(24,	28),	and	(26,	30))	Can	any	pair	of	terms	in	the	third	column	be	combined?	Complete	the	given	prime	implicant	chart.	0	(0,	2,	16,	18)	2	Quine-McCluskey	Method	Answer:	187	No	pair	of
terms	in	the	third	column	combine.	0	2	(0,	2,	16,	18)	(16,	18,	24,	26)	(24,	26,	28,	30)	(2,	3)	(3,	7)	(3,	11)	(5,	7)	(5,	13)	(9,	11)	(9,	13)	(14,	30)	×	×	3	×	×	×	×	5	7	9	11	13	14	16	18	24	26	28	30	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Determine	the	essential	prime	implicants,	and	cross	out	the	corresponding	rows	and	columns.	0	2	3	5	7	9	11	13
14	16	18	24	26	28	30	Answer:	*(0,	2,	16,	18)	(16,	18,	24,	26)	*(24,	26,	28,	30)	(2,	3)	(3,	7)	(3,	11)	(5,	7)	(5,	13)	(9,	11)	(9,	13)	*(14,	30)	××	××	×	×	×	××	×	×	×	×	×	×	×	×	×	×	×	×	×	××	×	×	×	×	*Indicates	an	essential	prime	implicant.	Note	that	all	remaining	columns	contain	two	or	more	X’s.	Choose	the	first	column	which	has	two	X’s	and	then	select
the	prime	implicant	which	covers	the	first	X	in	that	column.	Then,	choose	a	minimum	number	of	prime	implicants	which	cover	the	remaining	columns	in	the	chart.	188	Unit	6	Answer:	0	2	3	5	7	9	11	13	14	16	18	24	26	28	30	×	×	×	×	×	×	×	×	×	×	*(0,	2,	16,	18)	×	×	(16,	18,	24,	26)	*(24,	26,	28,	30)	(2,	3)	(3,	7)	→	(3,	11)	→	(5,	7)	(5,	13)	(9,	11)	→	(9,	13)	*
(14,	30)	××	×	×	×	××	×	×	×	××	×	×	×	×	*Indicates	an	essential	prime	implicant.	From	this	chart,	write	down	the	chosen	prime	implicants	in	0,	1,	and	–	notation.	Then,	write	the	minimum	sum	of	products	in	algebraic	form.	Answer:	–00–0,	11--0,	0–011,	001–1,	01–01,	and	–1110	f	=	B′C′E′	+	ABE′	+	A′C′DE	+	A′B′CE	+	A′BD′E	+	BCDE′	The	prime
implicant	chart	with	the	essential	prime	implicants	crossed	out	is	repeated	here.	Find	a	second	minimum	sum-of-products	solution.	0	2	3	5	7	9	11	13	14	16	18	24	26	28	30	*(0,	2,	16,	18)	(16,	18,	24,	26)	*(24,	26,	28,	30)	(2,	3)	(3,	7)	(3,	11)	(5,	7)	(5,	13)	(9,	11)	(9,	13)	*(14,	30)	××	××	×	×	×	××	×	×	×	×	×	×	×	×	×	×	×	×	×	××	×	×	×	×	*Indicates	an
essential	prime	implicant.	Answer:	Start	by	choosing	prime	implicant	(5,	13).	f	=	BCDE′	+	B′C′E′	+	ABE′	+	A′B′DE	+	A′CD′E	+	A′BC′E	Quine-McCluskey	Method	189	Problems	6.2	For	each	of	the	following	functions,	find	all	of	the	prime	implicants,	using	the	QuineMcCluskey	method.	(a)	f(a,	b,	c,	d)	=	Σ	m(1,	5,	7,	9,	11,	12,	14,	15)	(b)	f(a,	b,	c,	d)	=	Σ	m(0,
1,	3,	5,	6,	7,	8,	10,	14,	15)	6.3	Using	a	prime	implicant	chart,	find	all	minimum	sum-of-products	solutions	for	each	of	the	functions	given	in	Problem	6.2.	6.4	For	this	function,	find	a	minimum	sum-of-products	solution,	using	the	QuineMcCluskey	method.	f(a,	b,	c,	d)	=	Σ	m(1,	3,	4,	5,	6,	7,	10,	12,	13)	+	Σ	d(2,	9,	15)	6.5	Find	all	prime	implicants	of	the
following	function	and	then	find	all	minimum	solutions	using	Petrick’s	method:	F(A,	B,	C,	D)	=	Σ	m(9,	12,	13,	15)	+	Σ	d(1,	4,	5,	7,	8,	11,	14)	6.6	Using	the	method	of	map-entered	variables,	use	four-variable	maps	to	find	a	minimum	sum-of-products	expression	for	(a)	F(A,	B,	C,	D,	E)	=	Σ	m(0,	4,	5,	7,	9)	+	Σ	d(6,	11)	+	E(m1	+	m15),	where	the	m’s
represent	minterms	of	the	variables	A,	B,	C,	and	D.	(b)	Z(A,	B,	C,	D,	E,	F,	G)	=	Σ	m(0,	3,	13,	15)	+	Σ	d(1,	2,	7,	9,	14)	+	E(m6	+	m8)	+	Fm12	+	Gm5	6.7	For	each	of	the	following	functions,	find	all	of	the	prime	implicants	using	the	QuineMcCluskey	method.	(a)	f(a,	b,	c,	d)	=	Σ	m(0,	3,	4,	5,	7,	9,	11,	13)	(b)	f(a,	b,	c,	d)	=	Σ	m(2,	4,	5,	6,	9,	10,	11,	12,	13,	15)
6.8	Using	a	prime	implicant	chart,	find	all	minimum	sum-of-products	solutions	for	each	of	the	functions	given	in	Problem	6.7.	6.9	For	each	function,	find	a	minimum	sum-of-products	solution	using	the	QuineMcCluskey	method.	(a)	f(a,	b,	c,	d)	=	Σ	m(2,	3,	4,	7,	9,	11,	12,	13,	14)	+	Σ	d(1,	10,	15)	(b)	f(a,	b,	c,	d)	=	Σ	m(0,	1,	5,	6,	8,	9,	11,	13)	+	Σ	d(7,	10,	12)
(c)	f(a,	b,	c,	d)	=	Σ	m(3,	4,	6,	7,	8,	9,	11,	13,	14)	+	Σ	d(2,	5,	15)	6.10	Work	Problem	5.24(a)	using	the	Quine-McCluskey	method.	6.11	F(A,	B,	C,	D,	E)	=	Σ	m(0,	2,	6,	7,	8,	10,	11,	12,	13,	14,	16,	18,	19,	29,	30)	+	Σ	d(4,	9,	21)	190	Unit	6	Find	the	minimum	sum-of-products	expression	for	F,	using	the	Quine-McCluskey	method.	Underline	the	essential	prime
implicants	in	this	expression.	6.12	Using	the	Quine-McCluskey	method,	find	all	minimum	sum-of-products	expressions	for	(a)	f(A,	B,	C,	D,	E)	=	Σ	m(0,	1,	2,	3,	4,	8,	9,	10,	11,	19,	21,	22,	23,	27,	28,	29,	30)	(b)	f(A,	B,	C,	D,	E)	=	Σ	m(0,	1,	2,	4,	8,	11,	13,	14,	15,	17,	18,	20,	21,	26,	27,	30,	31)	6.13	Using	the	Quine-McCluskey	method,	find	all	minimum
product-of-sums	expressions	for	the	functions	of	Problem	6.12.	6.14	(a)	Using	the	Quine-McCluskey,	method	find	all	prime	implicants	of	f(A,	B,	C,	D)	=	Σ	m(1,	3,	5,	6,	8,	9,	12,	14,	15)	+	Σ	d(4,	10,	13).	Identify	all	essential	prime	implicants	and	find	all	minimum	sum-of-products	expressions.	(b)	Repeat	part	(a)	for	f	′.	6.15	(a)	Use	the	Quine-McCluskey
method	to	find	all	prime	implicants	of	f(a,	b,	c,	d,	e)	=	Σ	m(1,	2,	4,	5,	6,	7,	9,	12,	13,	15,	17,	20,	22,	25,	28,	30).	Find	all	essential	prime	implicants,	and	find	all	minimum	sum-of-products	expressions.	(b)	Repeat	part	(a)	for	f	′.	6.16	G(A,	B,	C,	D,	E,	F)	=	Σ	m(1,	2,	3,	16,	17,	18,	19,	26,	32,	39,	48,	63)	+	Σ	d(15,	28,	29,	30)	(a)	Find	all	minimum	sum-of-
products	expressions	for	G.	(b)	Circle	the	essential	prime	implicants	in	your	answer.	(c)	If	there	were	no	don’t-care	terms	present	in	the	original	function,	how	would	your	answer	to	part	(a)	change?	(Do	this	by	inspection	of	the	prime	implicant	chart;	do	not	rework	the	problem.)	6.17	(a)	Use	the	Quine-McCluskey	procedure	to	find	all	prime	implicants
of	the	function	G(A,	B,	C,	D,	E,	F)	=	Σ	m(1,	7,	11,	12,	15,	33,	35,	43,	47,	59,	60)	+	Σ	d(30,	50,	54,	58).	Identify	all	essential	prime	implicants	and	find	all	minimum	sum-of-products	expressions.	(b)	Repeat	part	(a)	for	G′.	6.18	The	following	prime	implicant	table	(chart)	is	for	a	four-variable	function	f(A,	B,	C,	D).	(a)	Give	the	decimal	representation	for
each	of	the	prime	implicants.	(b)	List	the	maxterms	of	f	.	(c)	List	the	don’t-cares	of	f	,	if	any.	(d)	Give	the	algebraic	expression	for	each	of	the	essential	prime	implicants.	2	–0–1	–01–	-	-	11	1--1	×	3	×	×	×	7	×	9	×	×	11	×	×	×	×	13	×	Quine-McCluskey	Method	191	6.19	Packages	arrive	at	the	stockroom	and	are	delivered	on	carts	to	offices	and	laboratories
by	student	employees.	The	carts	and	packages	are	various	sizes	and	shapes.	The	students	are	paid	according	to	the	carts	used.	There	are	five	carts	and	the	pay	for	their	use	is	Cart	C1:	$2	Cart	C2:	$1	Cart	C3:	$4	Cart	C4:	$2	Cart	C5:	$2	On	a	particular	day,	seven	packages	arrive,	and	they	can	be	delivered	using	the	five	carts	as	follows:	C1	can	be
used	for	packages	P1,	P3,	and	P4.	C2	can	be	used	for	packages	P2,	P5,	and	P6.	C3	can	be	used	for	packages	P1,	P2,	P5,	P6,	and	P7.	C4	can	be	used	for	packages	P3,	P6,	and	P7.	C5	can	be	used	for	packages	P2	and	P4.	The	stockroom	manager	wants	the	packages	delivered	at	minimum	cost.	Using	minimization	techniques	described	in	this	unit,	present
a	systematic	procedure	for	finding	the	minimum	cost	solution.	6.20	Use	the	Quine-McCluskey	procedure	to	find	all	prime	implicants	of	the	function	h(A,	B,	C,	D,	E,	F,	G)	=	Σ	m(24,	28,	39,	47,	70,	86,	88,	92,	102,	105,	118).	Express	the	prime	implicants	algebraically.	6.21	Shown	below	is	the	prime	implicant	chart	for	a	completely	specified	four-variable
combinational	logic	function	r(w,	x,	y,	z).	(a)	Algebraically	express	r	as	a	product	of	maxterms.	(b)	Give	algebraic	expressions	for	the	prime	implicants	labeled	A,	C,	and	D	in	the	table.	(c)	Find	all	minimal	sum-of-product	expressions	for	r.	You	do	not	have	to	give	algebraic	expressions;	instead	just	list	the	prime	implicants	(A,	B,	C,	etc.)	required	in	the
sum(s).	0	A	B	C	D	E	F	G	H	4	×	×	×	5	6	7	×	×	×	×	×	×	×	×	8	9	10	11	13	×	×	×	×	×	×	×	×	×	×	×	14	15	×	×	×	×	×	×	6.22	(a)	In	the	prime	implicant	chart	of	Problem	6.21,	column	7	is	said	to	cover	column	6	since	column	7	has	an	X	in	each	row	that	column	6	does.	Similarly,	column	11	192	Unit	6	covers	column	10	and	column	15	covers	column	14.
Columns	7,	11,	and	15	can	be	removed	to	obtain	a	simpler	chart	having	the	same	solutions	as	the	original.	Explain	why	this	is	correct.	(b)	In	Table	6-5	(after	removing	row	P2	and	columns	0	and	2),	row	P3	covers	row	P1.	Row	(prime	implicant)	P1	can	be	removed,	and	the	resulting	chart	will	have	a	minimum	solution	for	the	original	table.	Explain	why
this	is	correct.	Are	there	any	restrictions	on	the	two	prime	implicants	to	allow	removal	of	the	covered	prime	implicant?	(c)	After	deleting	row	P1	from	Table	6-5,	row	P3	must	be	included	in	a	minimal	solution	for	the	chart.	Why?	6.23	Find	all	prime	implicants	of	the	following	function,	and	then	find	all	minimum	solutions	using	Petrick’s	method:	F(A,	B,
C,	D)	=	Σ	m(7,	12,	14,	15)	+	Σ	d(1,	3,	5,	8,	10,	11,	13)	6.24	Using	the	method	of	map-entered	variables,	use	four-variable	maps	to	find	a	minimum	sum-of-products	expression	for	(a)	F(A,	B,	C,	D,	E)	=	Σ	m(0,	4,	6,	13,	14)	+	Σ	d(2,	9)	+	E(m1	+	m12)	(b)	Z(A,	B,	C,	D,	E,	F,	G)	=	Σ	m(2,	5,	6,	9)	+	Σ	d(1,	3,	4,	13,	14)	+	E(m11	+	m12)	+	F(m10)	+	G(m0)	6.25
(a)	Rework	Problem	6.6(a),	using	a	five-variable	map.	(b)	Rework	Problem	6.6(a),	using	the	Quine-McCluskey	method.	Note	that	you	must	express	F	in	terms	of	minterms	of	all	five	variables;	the	original	fourvariable	minterms	cannot	be	used.	6.26	Using	map-entered	variables,	find	the	minimum	sum-of-products	expressions	for	the	following	function:	G
=	C′E′F	+	DEF	+	AD′E′F	′	+	BDE′F	+	AD′EF	′	UNIT	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	7	Objectives	1.	Design	a	minimal	two-level	or	multi-level	circuit	of	AND	and	OR	gates	to	realize	a	given	function.	(Consider	both	circuits	with	an	OR	gate	at	the	output	and	circuits	with	an	AND	gate	at	the	output.)	2.	Design	or	analyze	a	two-level	gate
circuit	using	any	one	of	the	eight	basic	forms	(AND-OR,	NAND-NAND,	OR-NAND,	NOR-OR,	OR-AND,	NOR-NOR,	AND-NOR,	and	NAND-AND).	3.	Design	or	analyze	a	multi-level	NAND-gate	or	NOR-gate	circuit.	4.	Convert	circuits	of	AND	and	OR	gates	to	circuits	of	NAND	gates	or	NOR	gates,	and	conversely,	by	adding	or	deleting	inversion	bubbles.	5.
Design	a	minimal	two-level,	multiple-output	AND-OR,	OR-AND,	NANDNAND,	or	NOR-NOR	circuit	using	Karnaugh	maps.	193	194	Unit	7	Study	Guide	1.	Study	Section	7.1,	Multi-Level	Gate	Circuits.	(a)	What	are	two	ways	of	changing	the	number	of	levels	in	a	gate	circuit?	(b)	By	constructing	a	tree	diagram,	determine	the	number	of	gates,	gate	inputs,
and	levels	of	gates	required	to	realize	Z1	and	Z2:	Z1	=	[(A	+	B)C	+	DE(F	+	G)]	H	Z2	=	A	+	B	[C	+	DE(F	+	G)]	Check	your	answers	by	drawing	the	corresponding	gate	circuits.	(c)	In	order	to	find	a	minimum	two-level	solution,	why	is	it	necessary	to	consider	both	a	sum-of-products	form	and	a	product-of-sums	form	for	the	function?	(d)	One	realization
of	Z	=	ABC(D	+	E)	+	FG	is	A	B	C	Z	D	E	F	G	Redraw	the	circuit	so	that	it	uses	one	less	gate	and	so	that	the	output	of	an	AND	gate	never	goes	directly	to	the	input	of	another	AND	gate.	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	195	(e)	Work	Problems	7.1	and	7.2.	Unless	otherwise	specified,	you	may	always	assume	that	both	the	variables	and
their	complements	are	available	as	circuit	inputs.	2.	Study	Section	7.2,	NAND	and	NOR	Gates.	(a)	For	each	gate,	specify	the	missing	inputs:	1	1	1	0	0	0	0	1	(b)	What	is	meant	by	functionally	complete	set	of	logic	gates?	(c)	How	can	you	show	that	a	set	of	logic	gates	is	functionally	complete?	(d)	Show	that	the	NOR	gate	itself	is	functionally	complete.	(e)
Using	NAND	gates,	draw	a	circuit	for	F	=	(A′(BC)′)′.	(f)	Using	NOR	gates,	draw	a	circuit	for	F	=	((X	+	Y)′	+	(X′	+	Z)′)′.	3.	Study	Section	7.3,	Design	of	Two-Level	NAND-	and	NOR-Gate	Circuits.	(a)	Draw	the	circuit	corresponding	to	Equation	(7-17).	(b)	Derive	Equation	(7-18).	(c)	Make	sure	that	you	understand	the	relation	between	Equations	(7-13)
through	(7-21)	and	the	diagrams	of	Figure	7-11.	(d)	Why	is	the	NOR-NAND	form	degenerate?	Unit	7	(e)	What	assumption	is	made	about	the	types	of	inputs	available	when	the	procedures	for	designing	two-level	NAND-NAND	and	NOR-NOR	circuits	are	used?	(f)	For	these	procedures	the	literal	inputs	to	the	output	gate	are	complemented	but	not	the
literal	inputs	to	the	other	gates.	Explain	why.	Use	an	equation	to	illustrate.	P1	y1	y2	P2	ℓ1	ℓ2	...	x1	x2	...	(g)	A	general	OR-AND	circuit	follows.	Transform	this	to	a	NOR-NOR	circuit	and	prove	that	your	transformation	is	valid.	F	196	(h)	Work	Problem	7.3.	4.	Study	Section	7.4,	Design	of	Multi-Level	NAND-	and	NOR-Gate	Circuits.	(a)	Verify	that	the
NAND	circuit	of	Figure	7-13	is	correct	by	dividing	the	corresponding	circuit	of	AND	and	OR	gates	into	two-level	subcircuits	and	transforming	each	subcircuit.	(b)	If	you	wish	to	design	a	two-level	circuit	using	only	NOR	gates,	should	you	start	with	a	minimum	sum	of	products	or	a	minimum	product	of	sums?	(c)	Note	that	direct	conversion	of	a	circuit	of
AND	and	OR	gates	to	a	NANDgate	circuit	requires	starting	with	an	OR	gate	at	the	output,	but	the	direct	conversion	to	a	NOR-gate	circuit	requires	starting	with	an	AND	gate	at	the	output.	This	is	easy	to	remember	because	a	NAND	is	equivalent	to	an	OR	with	the	inputs	inverted:	a	b	c	f	=	a′	b′	c′	f	and	a	NOR	is	equivalent	to	an	AND	with	the	inputs
inverted:	a	b	c	f	=	a′	b′	c′	f	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	197	(d)	Convert	the	circuit	of	Figure	7-1(b)	to	all	NAND	gates.	(e)	Work	Problems	7.4,	7.5,	7.6,	and	7.7.	5.	Study	Section	7.5,	Circuit	Conversion	Using	Alternative	Gate	Symbols.	(a)	Determine	the	logic	function	realized	by	each	of	the	following	circuits:	A	B	A	C	F	B	C	G	G=	F=
(b)	Convert	the	circuit	of	Figure	7-13(a)	to	NAND	gates	by	adding	bubbles	and	complementing	input	variables	when	necessary.	(You	should	have	added	12	bubbles.	Your	result	should	be	similar	to	Figure	7-13(b),	except	some	of	the	NAND	gates	will	use	the	alternative	symbol.)	(c)	Draw	a	circuit	of	AND	and	OR	gates	for	the	following	equation:	Z	=	A	[
BC	+	D	+	E(F	+	GH)]	Then	convert	to	NOR	gates	by	adding	bubbles	and	complementing	inputs	when	necessary.	(You	should	have	added	10	bubbles	and	complemented	six	input	variables.)	(d)	Work	Problem	7.8.	6.	Study	Section	7.6,	Design	of	Two-Level,	Multiple-Output	Circuits.	(a)	In	which	of	the	following	cases	would	you	replace	a	term	xy′	with
xy′z	+	xy′z′?	(1)	Neither	xy′z	or	xy′z′	is	used	in	another	function.	(2)	Both	xy′z	and	xy′z′	are	used	in	other	functions.	(3)	Term	xy′z	is	used	in	another	function,	but	xy′z′	is	not.	(b)	In	the	second	example	(Figure	7-23),	in	f2,	c	could	have	been	replaced	by	bc	+	b′c	because	bc	and	b′c	were	available	“free”	from	f1	and	f3.	Why	was	this	replacement	not	made?
198	Unit	7	(c)	In	the	following	example,	compute	the	cost	of	realizing	f1	and	f2	separately;	then	compute	the	cost	using	the	term	a′b′c	in	common	between	the	two	functions.	Use	a	two-level	AND-OR	circuit	in	both	cases.	a	a	0	bc	1	00	01	1	11	1	0	1	00	1	1	01	1	bc	11	1	10	10	f1	1	1	f2	(d)	Find	expressions	which	correspond	to	a	two-level,	minimum
multipleoutput,	AND-OR	realization	of	F1,	F2,	and	F3.	Why	should	the	term	cd	not	be	included	in	F1?	ab	cd	ab	00	01	11	10	cd	ab	00	01	11	10	cd	00	1	00	1	00	01	1	01	1	01	1	11	11	1	1	1	10	1	1	1	1	10	F1	11	1	00	01	1	1	1	11	10	1	1	10	F2	F3	F1	=	F2	=	F3	=	(e)	Work	Problems	7.9,	7.10,	and	7.11.	(f)	Work	Problem	7.12.	(Hint:	Work	with	the	0’s	on	the
maps	and	first	find	a	minimum	solution	for	f1′,	f2′,	and	f3′.)	7.	Study	Section	7.7,	Multiple-Output	NAND-	and	NOR-Gate	Circuits.	(a)	Derive	expressions	for	the	F1	and	F2	outputs	of	the	NOR	circuits	of	Figure	7-26(b)	by	finding	the	equation	for	each	gate	output,	and	show	that	these	expressions	reduce	to	the	original	expressions	for	F1	and	F2.	Multi-
Level	Gate	Circuits	NAND	and	NOR	Gates	199	(b)	Convert	Figure	7-26(a)	to	7-26(b)	by	using	the	bubble	method.	(c)	Work	Problem	7.13.	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	In	the	first	part	of	this	unit,	you	will	learn	how	to	design	circuits	which	have	more	than	two	levels	of	AND	and	OR	gates.	In	the	second	part	you	will	learn	techniques
for	designing	with	NAND	and	NOR	gates.	These	techniques	generally	consist	of	first	designing	a	circuit	of	AND	and	OR	gates	and	then	converting	it	to	the	desired	type	of	gates.	These	techniques	are	easy	to	apply	provided	that	you	start	with	the	proper	form	of	circuit.	7.1	Multi-Level	Gate	Circuits	The	maximum	number	of	gates	cascaded	in	series
between	a	circuit	input	and	the	output	is	referred	to	as	the	number	of	levels	of	gates	(not	to	be	confused	with	voltage	levels).	Thus,	a	function	written	in	sum-of-products	form	or	in	product-of-sums	form	corresponds	directly	to	a	two-level	gate	circuit.	As	is	usually	the	case	in	digital	circuits	where	the	gates	are	driven	from	flip-flop	outputs	(as	discussed
in	Unit	11),	we	will	assume	that	all	variables	and	their	complements	are	available	as	circuit	inputs.	For	this	reason,	we	will	not	normally	count	inverters	which	are	connected	directly	200	Unit	7	to	input	variables	when	determining	the	number	of	levels	in	a	circuit.	In	this	unit	we	will	use	the	following	terminology:	1.	2.	3.	4.	AND-OR	circuit	means	a
two-level	circuit	composed	of	a	level	of	AND	gates	followed	by	an	OR	gate	at	the	output.	OR-AND	circuit	means	a	two-level	circuit	composed	of	a	level	of	OR	gates	followed	by	an	AND	gate	at	the	output.	OR-AND-OR	circuit	means	a	three-level	circuit	composed	of	a	level	of	OR	gates	followed	by	a	level	of	AND	gates	followed	by	an	OR	gate	at	the
output.	Circuit	of	AND	and	OR	gates	implies	no	particular	ordering	of	the	gates;	the	output	gate	may	be	either	AND	or	OR.	The	number	of	levels	in	an	AND-OR	circuit	can	usually	be	increased	by	factoring	the	sum-of-products	expression	from	which	it	was	derived.	Similarly,	the	number	of	levels	in	an	OR-AND	circuit	can	usually	be	increased	by
multiplying	out	some	of	the	terms	in	the	product-of-sums	expression	from	which	it	was	derived.	Logic	designers	are	concerned	with	the	number	of	levels	in	a	circuit	for	several	reasons.	Sometimes	factoring	(or	multiplying	out)	to	increase	the	number	of	levels	of	gates	will	reduce	the	required	number	of	gates	and	gate	inputs	and,	thus,	reduce	the	cost
of	building	the	circuit,	but	in	other	cases	increasing	the	number	of	levels	will	increase	the	cost.	In	many	applications,	the	number	of	gates	which	can	be	cascaded	is	limited	by	gate	delays.	When	the	input	of	a	gate	is	switched,	there	is	a	finite	time	before	the	output	changes.	When	several	gates	are	cascaded,	the	time	between	an	input	change	and	the
corresponding	change	in	the	circuit	output	may	become	excessive	and	slow	down	the	operation	of	the	digital	system.	The	number	of	gates,	gate	inputs,	and	levels	in	a	circuit	can	be	determined	by	inspection	of	the	corresponding	expression.	In	the	example	of	Figure	7-1(a),	the	tree	diagram	drawn	below	the	expression	for	Z	indicates	that	the
corresponding	circuit	will	have	four	levels,	six	gates,	and	13	gate	inputs,	as	verified	in	Figure	7-1(b).	Each	FIGURE	7-1	Four-Level	Realization	of	Z	Z	=	(AB	+	C)	(D	+	E	+	FG)	+	H	2	2	A	B	F	G	Level	4	©	Cengage	Learning	2014	C	2	DE	Level	3	3	Level	2	2	H	2	Level	1	Z	(a)	(b)	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	FIGURE	7-2	Three-Level
Realization	of	Z	Z	=	AB(D	+	E)	+	C(D	+	E)	+	ABFG	+	CFG	+	H	2	D	E	Level	3	*	©	Cengage	Learning	2014	AB	3	201	2	4	3	C	ABFG	CFG	Level	2	H	5	*	Level	1	The	same	gate	can	be	used	for	both	appearances	of	(D	+	E).	Z	(a)	(b)	node	on	the	tree	diagram	represents	a	gate,	and	the	number	of	gate	inputs	is	written	beside	each	node.	We	can	change	the
expression	for	Z	to	three	levels	by	partially	multiplying	it	out:	Z	=	(AB	+	C)	[(D	+	E)	+	FG]	+	H	=	AB(D	+	E)	+	C(D	+	E)	+	ABFG	+	CFG	+	H	As	shown	in	Figure	7-2,	the	resulting	circuit	requires	three	levels,	six	gates,	and	19	gate	inputs.	Example	of	Multi-Level	Design	Using	AND	and	OR	Gates	Solution:	Problem:	f(a,	b,	c,	d)	=	Σ	m(1,	5,	6,	10,	13,	14)
Consider	solutions	with	two	levels	of	gates	and	three	levels	of	gates.	Try	to	minimize	the	number	of	gates	and	the	total	number	of	gate	inputs.	Assume	that	all	variables	and	their	complements	are	available	as	inputs.	First,	simplify	f	by	using	a	Karnaugh	map	(Figure	7-3):	FIGURE	7-3	©	Cengage	Learning	2014	Find	a	circuit	of	AND	and	OR	gates	to
realize	ab	00	01	11	10	00	0	0	0	0	01	1	1	1	0	11	0	0	0	0	10	0	1	1	1	cd	f	=	a′c′d	+	bc′d	+	bcd′	+	acd′	(7-1)	202	Unit	7	This	leads	directly	to	a	two-level	AND-OR	gate	circuit	(Figure	7-4):	FIGURE	7-4	©	Cengage	Learning	2014	a′	c′	d	b	c′	d	b	c	d′	a	c	d′	f	Two	levels	Five	gates	16	gate	inputs	Factoring	Equation	(7-1)	yields	f	=	c′d(a′	+	b)	+	cd′(a	+	b)	(7-2)
which	leads	to	the	following	three-level	OR-AND-OR	gate	circuit	(Figure	7-5):	FIGURE	7-5	a′	©	Cengage	Learning	2014	b	a	c′	d	f	c	d′	Three	levels	Five	gates	12	gate	inputs	b	Both	of	these	solutions	have	an	OR	gate	at	the	output.	A	solution	with	an	AND	gate	at	the	output	might	have	fewer	gates	or	gate	inputs.	A	two-level	OR-AND	circuit	corresponds
to	a	product-of-sums	expression	for	the	function.	This	can	be	obtained	from	the	0’s	on	the	Karnaugh	map	as	follows:	f′	=	c′d′	+	ab′c′	+	cd	+	a′b′c	f	=	(c	+	d)(a′	+	b	+	c)(c′	+	d′)(a	+	b	+	c′)	Equation	(7-4)	leads	directly	to	a	two-level	OR-AND	circuit	(Figure	7-6):	FIGURE	7-6	©	Cengage	Learning	2014	c	d	a′	b	c	c′	d′	a	b	c′	f	Two	levels	Five	gates	14	gate
inputs	(7-3)	(7-4)	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	203	To	get	a	three-level	circuit	with	an	AND-gate	output,	we	partially	multiply	out	Equation	(7-4)	using	(X	+	Y)(X	+	Z)	=	X	+	YZ:	f	=	[c	+	d(a′	+	b)][c′	+	d′(a	+	b)]	(7-5)	Equation	(7-5)	would	require	four	levels	of	gates	to	realize;	however,	if	we	multiply	out	d′(a	+	b)	and	d(a′	+	b),	we
get	f	=	(c	+	a′d	+	bd)(c′	+	ad′	+	bd′)	(7-6)	which	leads	directly	to	a	three-level	AND-OR-AND	circuit	(Figure	7-7):	FIGURE	7-7	©	Cengage	Learning	2014	a	d′	b	c′	d′	f	a′	d	b	Three	levels	Seven	gates	16	gate	inputs	c	d	For	this	particular	example,	the	best	two-level	solution	had	an	AND	gate	at	the	output	(Figure	7-6),	and	the	best	three-level	solution	had
an	OR	gate	at	the	output	(Figure	7-5).	In	general,	to	be	sure	of	obtaining	a	minimum	solution,	one	must	find	both	the	circuit	with	the	AND-gate	output	and	the	one	with	the	OR-gate	output.	If	an	expression	for	f′	has	n	levels,	the	complement	of	that	expression	is	an	n-level	expression	for	f	.	Therefore,	to	realize	f	as	an	n-level	circuit	with	an	AND-gate
output,	one	procedure	is	first	to	find	an	n-level	expression	for	f′	with	an	OR	operation	at	the	output	level	and	then	complement	the	expression	for	f′.	In	the	preceding	example,	factoring	Equation	(7-3)	gives	a	three-level	expression	for	f′:	f′	=	c′(d′	+	ab′)	+	c(d	+	a′b′)	=	c′(d′	+	a)(d′	+	b′)	+	c(d	+	a′)(d	+	b′)	(7-7)	Complementing	Equation	(7-7)	gives
Equation	(7-6),	which	corresponds	to	the	three-level	AND-OR-AND	circuit	of	Figure	7-7.	204	Unit	7	7.2	NAND	and	NOR	Gates	Until	this	point	we	have	designed	logic	circuits	using	AND	gates,	OR	gates,	and	inverters.	Exclusive-OR	and	equivalence	gates	have	also	been	introduced	in	Unit	3.	In	this	section	we	will	define	NAND	and	NOR	gates.	Logic
designers	frequently	use	NAND	and	NOR	gates	because	they	are	generally	faster	and	use	fewer	components	than	AND	or	OR	gates.	As	will	be	shown	later,	any	logic	function	can	be	implemented	using	only	NAND	gates	or	only	NOR	gates.	Figure	7-8(a)	shows	a	three-input	NAND	gate.	The	small	circle	(or	“bubble”)	at	the	gate	output	indicates
inversion,	so	the	NAND	gate	is	equivalent	to	an	AND	gate	followed	by	an	inverter,	as	shown	in	Figure	7-8(b).	A	more	appropriate	name	would	be	an	AND-NOT	gate,	but	we	will	follow	common	usage	and	call	it	a	NAND	gate.	The	gate	output	is	F	=	(ABC)′	=	A′	+	B′	+	C′	The	output	of	the	n-input	NAND	gate	in	Figure	7-8(c)	is	F	=	(X1X2	.	.	.	Xn)′	=	X1′	+
X2′	+	·	·	·	+	Xn′	(7-8)	FIGURE	7-8	NAND	Gates	©	Cengage	Learning	2014	A	B	C	A	B	C	F	(a)	Three-input	NAND	gate	F	(b)	NAND	gate	equivalent	X1	X2	Xn	...	The	output	of	this	gate	is	1	iff	one	or	more	of	its	inputs	are	0.	F	(c)	n-input	NAND	gate	Figure	7-9(a)	shows	a	three-input	NOR	gate.	The	small	circle	at	the	gate	output	indicates	inversion,	so	the
NOR	gate	is	equivalent	to	an	OR	gate	followed	by	an	inverter.	A	more	appropriate	name	would	be	an	OR-NOT	gate,	but	we	will	follow	common	usage	and	call	it	a	NOR	gate.	The	gate	output	is	FIGURE	7-9	NOR	Gates	©	Cengage	Learning	2014	A	B	C	A	B	C	F	(a)	Three-input	NOR	gate	F	(b)	NOR	gate	equivalent	X1	X2	Xn	...	F	=	(A	+	B	+	C)′	=	A′B′C′	F
(c)	n-input	NOR	gate	The	output	of	an	n-input	NOR	gate,	shown	in	Figure	7-9(c),	is	F	=	(X1	+	X2	+	·	·	·	+	Xn)′	=	X1′X2′	.	.	.	Xn′	(7-9)	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	205	A	set	of	logic	operations	is	said	to	be	functionally	complete	if	any	Boolean	function	can	be	expressed	in	terms	of	this	set	of	operations.	The	set	AND,	OR,	and	NOT	is
obviously	functionally	complete	because	any	function	can	be	expressed	in	sum-of-products	form,	and	a	sum-of-products	expression	uses	only	the	AND,	OR,	and	NOT	operations.	Similarly,	a	set	of	logic	gates	is	functionally	complete	if	all	switching	functions	can	be	realized	using	this	set	of	gates.	Because	the	set	of	operations	AND,	OR,	and	NOT	is
functionally	complete,	any	set	of	logic	gates	which	can	realize	AND,	OR,	and	NOT	is	also	functionally	complete.	AND	and	NOT	are	a	functionally	complete	set	of	gates	because	OR	can	also	be	realized	using	AND	and	NOT:	X′	X	X′Y′	(X′Y′)′	=	X	+	Y	Y′	Y	If	a	single	gate	forms	a	functionally	complete	set	by	itself,	then	any	switching	function	can	be	realized
using	only	gates	of	that	type.	The	NAND	gate	is	an	example	of	such	a	gate.	Because	the	NAND	gate	performs	the	AND	operation	followed	by	an	inversion,	NOT,	AND,	and	OR	can	be	realized	using	only	NAND	gates,	as	shown	in	Figure	7-10.	Thus,	any	switching	function	can	be	realized	using	only	NAND	gates.	An	easy	method	for	converting	an	AND-
OR	circuit	to	a	NAND	circuit	is	discussed	in	the	next	section.	Similarly,	any	function	can	be	realized	using	only	NOR	gates.	FIGURE	7-10	NAND	Gate	Realization	of	NOT,	AND,	and	OR	X	A	X′	A	(AB)′	B	AB	A′	(A′B′)′	=	A	+	B	©	Cengage	Learning	2014	B	B′	The	following	procedure	can	be	used	to	determine	if	a	given	set	of	gates	is	functionally	complete.
First,	write	out	a	minimum	sum-of-products	expression	for	the	function	realized	by	each	gate.	If	no	complement	appears	in	any	of	these	expressions,	then	NOT	cannot	be	realized,	and	the	set	is	not	functionally	complete.	If	a	complement	appears	in	one	of	the	expressions,	then	NOT	can	generally	be	realized	by	an	appropriate	choice	of	inputs	to	the
corresponding	gate.	(We	will	always	assume	that	0	and	1	are	available	as	gate	inputs).	Next,	attempt	to	realize	AND	or	OR,	keeping	in	mind	that	NOT	is	now	available.	Once	AND	or	OR	has	been	realized,	the	other	one	can	always	be	realized	using	DeMorgan’s	laws	if	no	more	direct	procedure	is	apparent.	For	example,	if	OR	and	NOT	are	available,
AND	can	be	realized	by	XY	=	(X′	+	Y′)′	(7-10)	206	Unit	7	7.3	Design	of	Two-Level	NAND-	and	NOR-Gate	Circuits	In	this	section	two-level	circuits	realizing	a	function	F	using	various	combinations	of	NAND,	NOR,	AND,	and	OR	gates	are	obtained	by	converting	the	switching	algebra	expression	for	F	into	the	form	matching	the	desired	gate	circuit.	It	is
difficult	to	extend	this	approach	to	multiple-level	circuits	because	it	requires	repeated	complementation	of	parts	of	the	expression	for	F.	In	Sections	7.4	and	7.5,	an	alternative	method	is	developed	which	first	realizes	F	in	the	desired	form	using	AND	and	OR	gates.	The	circuit	with	AND	and	OR	gates	is	converted	to	one	containing	NAND	or	NOR	gates
by	inserting	inverters	in	pairs	to	convert	each	AND	and	OR	gate	to	a	NAND	or	NOR	gate.	This	approach	avoids	manipulation	of	the	expression	for	F	and	is	less	error	prone.	A	two-level	circuit	composed	of	AND	and	OR	gates	is	easily	converted	to	a	circuit	composed	of	NAND	gates	or	NOR	gates.	This	conversion	is	carried	out	by	using	F	=	(F	′)′	and
then	applying	DeMorgan’s	laws:	(X1	+	X2	+	·	·	·	+	Xn)′	=	X1′X2′	·	·	·	Xn′	(X1X2	·	·	·	Xn)′	=	X1′	+	X2′	+	·	·	·	+	Xn′	(7-11)	(7-12)	The	following	example	illustrates	conversion	of	a	minimum	sum-of-products	form	to	several	other	two-level	forms:	F	=	A	+	BC′	+	B′CD	=	[(A	+	BC′	+	B′CD)′]	′	(7-13)	=	[A′	·	(BC′)′	·	(B′CD)′]	′	(by	7-11)	(7-14)	=	[A′	·	(B′	+	C)	·	(B	+
C′	+	D′)]	′	(by	7-12)	(7-15)	=	A	+	(B′	+	C)′	+	(B	+	C′	+	D′)′	(by	7-12)	(7-16)	Equations	(7-13),	(7-14),	(7-15),	and	(7-16)	represent	the	AND-OR,	NAND-NAND,	OR-NAND,	and	NOR-OR	forms,	respectively,	as	shown	in	Figure	7-11.	Rewriting	Equation	(7-16)	in	the	form	F	=	5[A	+	(B′	+	C)′	+	(B	+	C′	+	D′)′]	′	6	′	(7-17)	leads	to	a	three-level	NOR-NOR-
INVERT	circuit.	However,	if	we	want	a	two-level	circuit	containing	only	NOR	gates,	we	should	start	with	the	minimum	productof-sums	form	for	F	instead	of	the	minimum	sum	of	products.	After	obtaining	the	minimum	product	of	sums	from	a	Karnaugh	map,	F	can	be	written	in	the	following	two-level	forms:	F	=	(A	+	B	+	C)(A	+	B′	+	C′)(A	+	C′	+	D)	=
5[(A	+	B	+	C)(A	+	B′	+	C′)(A	+	C′	+	D)]	′	6	′	=	[(A	+	B	+	C)′	+	(A	+	B′	+	C′)′	+	(A	+	C′	+	D)′]	′	=	(A′B′C′	+	A′BC	+	A′CD′)′	=	(A′B′C′)′	·	(A′BC)′	·	(A′CD′)′	(7-18)	(by	7-12)	(7-19)	(by	7-11)	(7-20)	(by	7-11)	(7-21)	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	207	F	=	A	+	BC′	+	B′CD	(7-13)	FIGURE	7-11	Eight	Basic	Forms	for	Two-Level	Circuits	B	C′	B′	C	D
©	Cengage	Learning	2014	F	=	A	+	(B′	+	C)′	+	(B	+	C′	+	D′)′	A	F	F	F	=	[A′	∙	(BC′)′	∙	(B′CD)′]′	ANDOR	(7-16)	B′	C	B	C′	D′	A	NOROR	(7-14)	B	C′	B′	C	D	NANDNAND	A′	F	ORNAND	B′	C	B	C′	D′	A′	F	F	=	[A′	∙	(B′	+	C)	∙	(B	+	C′	+	D′)]′	(7-15)	F	=	(A	+	B	+	C)(A	+	B′	+	C′)(A	+	C′	+	D)	A	B	C	A	B′	C′	A	C′	D	F	F	=	(A′B′C′)′	∙	(A′BC)′	∙	(A′CD′)′	(7-21)	A′	B′	C′	A′	B	C	A′	C
D′	ORAND	F	(7-18)	NANDAND	NORNOR	ANDNOR	A′	B′	C′	A′	B	C	A′	C	D′	F	=	(A′B′C′	+	A′BC	+	A′CD′)′	F	=	[(A	+	B	+	C)′	+	(A	+	B′	+	C′)′	+	(A	+	C′	+	D)′]′	(7-19)	A	B	C	A	F	B′	C′	A	C′	D	F	(7-20)	208	Unit	7	Equations	(7-18),	(7-19),	(7-20),	and	(7-21)	represent	the	OR-AND,	NOR-NOR,	AND-NOR,	and	NAND-AND	forms,	respectively,	as	shown	in	Figure	7-11.
Twolevel	AND-NOR	(AND-OR-INVERT)	circuits	are	available	in	integrated-circuit	form.	Some	types	of	NAND	gates	can	also	realize	AND-NOR	circuits	when	the	so-called	wired	OR	connection	is	used.	The	other	eight	possible	two-level	forms	(AND-AND,	OR-OR,	OR-NOR,	AND-NAND,	NAND-NOR,	NOR-NAND,	etc.)	are	degenerate	in	the	sense	that	they
cannot	realize	all	switching	functions.	Consider,	for	example,	the	following	NAND-NOR	circuit:	a	b	e	F	c	F	=	[(ab)′	+	(cd)′	+	e]	′	=	abcde′	d	From	this	example,	it	is	clear	that	the	NAND-NOR	form	can	realize	only	a	product	of	literals	and	not	a	sum	of	products.	Because	NAND	and	NOR	gates	are	readily	available	in	integrated	circuit	form,		two	of	the
most	commonly	used	circuit	forms	are	the	NAND-NAND	and	the	NOR-NOR.	Assuming	that	all	variables	and	their	complements	are	available	as	inputs,	the	following	method	can	be	used	to	realize	F	with	NAND	gates:	Procedure	for	designing	a	minimum	two-level	NAND-NAND	circuit:	1.	2.	3.	Find	a	minimum	sum-of-products	expression	for	F.	Draw	the
corresponding	two-level	AND-OR	circuit.	Replace	all	gates	with	NAND	gates	leaving	the	gate	interconnections	unchanged.	If	the	output	gate	has	any	single	literals	as	inputs,	complement	these	literals.	Figure	7-12	illustrates	the	transformation	of	step	3.	Verification	that	this	transformation	leaves	the	circuit	output	unchanged	follows.	In	general,	F	is	a
sum	of	literals	(ℓ1,	ℓ2,	.	.	.)	and	product	terms	(P1,	P2,	.	.	.):	F	=	ℓ1	+	ℓ2	+	·	·	·	+	P1	+	P2	+	·	·	·	After	applying	DeMorgan’s	law,	(a)	Before	transformation	F	x1	x2	P′1	y1	y2	P	2′	ℓ′1	ℓ′2	P2	ℓ1	ℓ2	..	.	y1	y2	..	.	P1	.	..	©	Cengage	Learning	2014	x1	x2	.	..	FIGURE	7-12	AND-OR	to	NAND-NAND	Transformation	F	=	(ℓ1′	ℓ2′	·	·	·	P1′	P2′	·	·	·)′	(b)	After
transformation	F	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	209	So	the	output	OR	gate	is	replaced	with	a	NAND	gate	with	inputs,	ℓ1′,	ℓ2′,	·	·	·,	P1′,	P2′,	·	·	·	.	Because	product	terms	P1,	P2,	.	.	.	are	each	realized	with	an	AND	gate,	P1′,	P2′,	.	.	.	are	each	realized	with	a	NAND	gate	in	the	transformed	circuit.	Assuming	that	all	variables	and	their
complements	are	available	as	inputs,	the	following	method	can	be	used	to	realize	F	with	NOR	gates:	Procedure	for	designing	a	minimum	two-level	NOR-NOR	circuit:	1.	2.	3.	Find	a	minimum	product-of-sums	expression	for	F.	Draw	the	corresponding	two-level	OR-AND	circuit.	Replace	all	gates	with	NOR	gates	leaving	the	gate	interconnections
unchanged.	If	the	output	gate	has	any	single	literals	as	inputs,	complement	these	literals.	This	procedure	is	similar	to	that	used	for	designing	NAND-NAND	circuits.	Note,	however,	that	for	the	NOR-NOR	circuit,	the	starting	point	is	a	minimum	product	of	sums	rather	than	a	sum	of	products.	7.4	Design	of	Multi-Level	NAND-	and	NOR-Gate	Circuits	The
following	procedure	may	be	used	to	design	multi-level	NAND-gate	circuits:	1.	2.	3.	Simplify	the	switching	function	to	be	realized.	Design	a	multi-level	circuit	of	AND	and	OR	gates.	The	output	gate	must	be	OR.	AND-gate	outputs	cannot	be	used	as	AND-gate	inputs;	OR-gate	outputs	cannot	be	used	as	OR-gate	inputs.	Number	the	levels	starting	with	the
output	gate	as	level	1.	Replace	all	gates	with	NAND	gates,	leaving	all	interconnections	between	gates	unchanged.	Leave	the	inputs	to	levels	2,	4,	6,	.	.	.	unchanged.	Invert	any	literals	which	appear	as	inputs	to	levels	1,	3,	5,	The	validity	of	this	procedure	is	easily	proven	by	dividing	the	multi-level	circuit	into	two-level	subcircuits	and	applying	the
previous	results	for	two-level	circuits	to	each	of	the	two-level	subcircuits.	The	example	of	Figure	7-13	illustrates	the	procedure.	Note	that	if	step	2	is	performed	correctly,	each	level	of	the	circuit	will	contain	only	AND	gates	or	only	OR	gates.	The	procedure	for	the	design	of	multi-level	NOR-gate	circuits	is	exactly	the	same	as	for	NAND-gate	circuits
except	the	output	gate	of	the	circuit	of	AND	and	OR	gates	must	be	an	AND	gate,	and	all	gates	are	replaced	with	NOR	gates.	Example	F1	=	a′	[b′	+	c(d	+	e′)	+	f	′g′]	+	hi′j	+	k	Figure	7-13	shows	how	the	AND-OR	circuit	for	F1	is	converted	to	the	corresponding	NAND	circuit.	210	Unit	7	FIGURE	7-13	Multi-Level	Circuit	Conversion	to	NAND	Gates	Level
5	Level	4	d	e′	Level	3	Level	2	Level	1	a′	c	©	Cengage	Learning	2014	b′	F1	k	f′	g′	h	i′	j	(a)	AND-OR	network	Level	5	Level	4	d′	e	Level	3	Level	2	Level	1	a′	c	b	F1	k′	f′	g′	h	i′	j	(b)	NAND	network	7.5	Circuit	Conversion	Using	Alternative	Gate	Symbols	Logic	designers	who	design	complex	digital	systems	often	find	it	convenient	to	use	more	than	one
representation	for	a	given	type	of	gate.	For	example,	an	inverter	can	be	represented	by	A	A′	or	A	A′	In	the	second	case,	the	inversion	“bubble”	is	at	the	input	instead	of	the	output.	Figure	7-14	shows	some	alternative	representations	for	AND,	OR,	NAND,	and	NOR	gates.	These	equivalent	gate	symbols	are	based	on	DeMorgan’s	laws.	FIGURE	7-14

Alternative	Gate	Symbols	©	Cengage	Learning	2014	A	B	AB	A+B	A	B	A	B	(AB)′	A	B	(A	+	B)′	AB	=	(A′	+	B′)′	A	+	B	=	(A′B′)′	(AB)′	=	A′	+	B′	(A	+	B)′	=	A′B′	(a)	AND	(b)	OR	(c)	NAND	(d)	NOR	These	alternative	symbols	can	be	used	to	facilitate	the	analysis	and	design	of	NANDand	NOR-gate	circuits.	Figure	7-15(a)	shows	a	simple	NAND-gate	circuit.	To
analyze	the	circuit,	we	will	replace	the	NAND	gates	at	the	first	and	third	levels	with	the	alternative	NAND	gate	symbol.	This	eliminates	the	inversion	bubble	at	the	circuit	output.	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	FIGURE	7-15	NAND	Gate	Circuit	Conversion	A	B′	1	C	D	©	Cengage	Learning	2014	E	2	F	4	211	Z	3	(a)	NAND	gate	network	A
B′	1	A′	+	B	C	D	E	2	[(A′	+	B)C]′	F	3	4	Z	=	(A′	+	B)C	+	F	′	+	DE	(DE)′	(b)	Alternate	form	for	NAND	gate	network	A′	B	1	C	D	E	2	F′	4	Z	3	(c)	Equivalent	AND-OR	network	In	the	resulting	circuit	(Figure	7-15(b)),	inverted	outputs	(those	with	a	bubble)	are	always	connected	to	inverted	inputs,	and	noninverted	outputs	are	connected	to	noninverted	inputs.
Because	two	inversions	in	a	row	cancel	each	other	out,	we	can	easily	analyze	the	circuit	without	algebraically	applying	DeMorgan’s	laws.	Note,	for	example,	that	the	output	of	gate	2	is	[(A′	+	B)C]	′,	but	the	term	(A′	+	B)C	appears	in	the	output	function.	We	can	also	convert	the	circuit	to	an	AND-OR	circuit	by	simply	removing	the	double	inversions	(see
Figure	7-15(c)).	When	a	single	input	variable	is	connected	to	an	inverted	input,	we	must	also	complement	that	variable	when	we	remove	the	inversion	from	the	gate	input.	For	example,	A	in	Figure	7-15(b)	becomes	A′	in	Figure	7-15(c).	The	circuit	of	AND	and	OR	gates	shown	in	Figure	7-16(a)	can	easily	be	converted	to	a	NOR-gate	circuit	because	the
output	gate	is	an	AND-gate,	and	AND	and	OR	gates	alternate	throughout	the	circuit.	That	is,	AND-gate	outputs	connect	only	to	OR-gate	inputs,	and	OR-gate	outputs	connect	only	to	AND-gate	inputs.	To	carry	out	conversion	to	NOR-gates,	we	first	replace	all	of	the	OR	and	AND	gates	with	NOR	gates,	as	shown	in	Figure	7-16(b).	Because	each	inverted
gate	output	drives	an	inverted	gate	input,	the	pairs	of	inversions	cancel.	However,	when	an	input	variable	drives	an	inverted	input,	we	have	added	a	single	inversion,	so	we	must	complement	the	variable	to	compensate.	Therefore,	we	have	complemented	C	and	G.	The	resulting	NOR-gate	circuit	is	equivalent	to	the	original	AND-OR	circuit.	Even	if	AND
and	OR	gates	do	not	alternate,	we	can	still	convert	an	AND-OR	circuit	to	a	NAND	or	NOR	circuit,	but	it	may	be	necessary	to	add	extra	inverters	so	that	each	added	inversion	is	cancelled	by	another	inversion.	The	following	procedure	may	be	used	to	convert	to	a	NAND	(or	NOR)	circuit:	1.	Convert	all	AND	gates	to	NAND	gates	by	adding	an	inversion
bubble	at	the	output.	Convert	all	OR	gates	to	NAND	gates	by	adding	inversion	bubbles	at	the	212	Unit	7	FIGURE	7-16	Conversion	to	NOR	Gates	A	B′	G	C	Z	D	©	Cengage	Learning	2014	E	F	(a)	Circuit	with	OR	and	AND	gates	Double	inversion	cancels	A	B′	C′	D	Complemented	input	cancels	inversion	G′	Z	E	F	(b)	Equivalent	circuit	with	NOR	gates	2.	3.
FIGURE	7-17	Conversion	of	AND-OR	Circuit	to	NAND	Gates	inputs.	(To	convert	to	NOR,	add	inversion	bubbles	at	all	OR-gate	outputs	and	all	AND-gate	inputs.)	Whenever	an	inverted	output	drives	an	inverted	input,	no	further	action	is	needed	because	the	two	inversions	cancel.	Whenever	a	noninverted	gate	output	drives	an	inverted	gate	input	or	vice
versa,	insert	an	inverter	so	that	the	bubbles	will	cancel.	(Choose	an	inverter	with	the	bubble	at	the	input	or	output	as	required.)	A	B′	C	D	E	F	(a)	AND-OR	network	©	Cengage	Learning	2014	Bubbles	cancel	A	B′	C	D	E	F	(b)	First	step	in	NAND	conversion	Added	inverter	A	B′	Added	inverter	C	D′	(c)	Completed	conversion	E′	F	Multi-Level	Gate	Circuits
NAND	and	NOR	Gates	4.	213	Whenever	a	variable	drives	an	inverted	input,	complement	the	variable	(or	add	an	inverter)	so	the	complementation	cancels	the	inversion	at	the	input.	In	other	words,	if	we	always	add	bubbles	(or	inversions)	in	pairs,	the	function	realized	by	the	circuit	will	be	unchanged.	To	illustrate	the	procedure	we	will	convert	Figure
7-17(a)	to	NANDs.	First,	we	add	bubbles	to	change	all	gates	to	NAND	gates	(Figure	7-17(b)).	In	four	places	(highlighted	in	blue),	we	have	added	only	a	single	inversion.	This	is	corrected	in	Figure	7-17(c)	by	adding	two	inverters	and	complementing	two	variables.	Note	that	when	an	inverter	is	added	between	two	gates	during	the	conversion	procedure,
the	number	of	levels	in	the	circuit	is	increased	by	1.	This	is	avoided	if	each	path	through	the	circuit	alternately	passes	through	AND	and	OR	gates.	Similarly,	if	the	circuit	containing	AND	and	OR	gates	has	an	output	OR	(AND)	gate	and	it	is	converted	to	a	circuit	with	NOR	(NAND)	gates,	then	it	is	necessary	to	add	an	inverter	at	the	output,	which	also
increases	the	number	of	levels	by	1.	Hence,	if	a	NAND	(NOR)	gate	circuit	is	desired,	it	is	usually	best	to	start	with	a	circuit	containing	AND	and	OR	gates	that	has	an	output	OR	(AND)	gate.	An	advantage	of	multi-level	circuits	is	that	gate	fan-in	can	be	reduced.	As	an	example,	consider	F	=	D′E	+	BCE	+	AB′	+	AC′	(7-22)	A	two-level	AND-OR	circuit
implementing	F	requires	one	4-input	OR,	one	3-input	AND,	and	three	2-input	ANDs.	To	reduce	the	fan-in,	F	can	be	factored.	F	=	A(B′	+	C′)	+	E(D′	+	BC)	(7-23)	The	resulting	four-level	circuit	using	AND	and	OR	gates	is	shown	in	Figure	7-18.	FIGURE	7-18	Limited	Fan-In	Circuit	B′	C′	A	©	Cengage	Learning	2014	F	B	C	E	D′	Since	the	output	gate	is	an
OR,	the	circuit	can	be	converted	to	NAND	gates	without	increasing	the	number	of	levels;	Figure	7-19	is	the	result.	Note	that	the	threelevel	OR	with	inputs	B′	and	C′	and	the	four-level	AND	with	inputs	B	and	C	both	become	a	NAND	with	inputs	B	and	C;	hence,	both	can	be	replaced	by	the	same	gate.	FIGURE	7-19	NAND	Gate	Equivalent	of	Figure	7-18
A	B	C	©	Cengage	Learning	2014	F	D	E	214	Unit	7	Reducing	the	fan-in	for	some	functions	requires	inserting	inverters.	The	fan-in	for	F	=	ABC	+	D	can	be	reduced	to	2	by	factoring	F	as	F	=	(AB)C	+	D.	If	this	is	implemented	using	two-input	NAND	gates,	an	inverter	is	required	and	the	resulting	circuit	has	four	levels.	7.6	Design	of	Two-Level,	Multiple-
Output	Circuits	Solution	of	digital	design	problems	often	requires	the	realization	of	several	functions	of	the	same	variables.	Although	each	function	could	be	realized	separately,	the	use	of	some	gates	in	common	between	two	or	more	functions	sometimes	leads	to	a	more	economical	realization.	The	following	example	illustrates	this:	Design	a	circuit
with	four	inputs	and	three	outputs	which	realizes	the	functions	F1(A,	B,	C,	D)	=	Σ	m(11,	12,	13,	14,	15)	F2(A,	B,	C,	D)	=	Σ	m(3,	7,	11,	12,	13,	15)	F3(A,	B,	C,	D)	=	Σ	m(3,	7,	12,	13,	14,	15)	(7-24)	First,	each	function	will	be	realized	individually.	The	Karnaugh	maps,	functions,	and	resulting	circuit	are	given	in	Figures	7-20	and	7-21.	The	cost	of	this
circuit	is	9	gates	and	21	gate	inputs.	An	obvious	way	to	simplify	this	circuit	is	to	use	the	same	gate	for	AB	in	both	F1	and	F3.	This	reduces	the	cost	to	eight	gates	and	19	gate	inputs.	(Another,	but	less	obvious,	way	to	simplify	the	circuit	is	possible.)	Observing	that	the	term	ACD	is	necessary	for	the	realization	of	F1	and	A′CD	is	necessary	for	F3,	if	we
replace	CD	in	F2	by	A′CD	+	ACD,	the	realization	of	CD	is	unnecessary	and	one	gate	is	saved.	Figure	7-22	shows	the	reduced	circuit,	which	requires	seven	gates	and	18	gate	inputs.	Note	that	F2	is	realized	by	the	expression	ABC′	+	A′CD	+	ACD,	which	is	not	a	minimum	sum	of	products,	and	two	of	the	terms	are	not	prime	implicants	of	F2.	Thus	in
realizing	multiple-output	circuits,	the	use	of	a	minimum	sum	of	prime	implicants	FIGURE	7-20	Karnaugh	Maps	for	Equations	(7-24)	AB	CD	AB	00	01	11	10	CD	AB	00	01	11	10	CD	00	01	11	00	1	00	1	00	1	01	1	01	1	01	1	11	1	10	1	©	Cengage	Learning	2014	F1	1	11	1	1	1	10	1	11	1	1	1	1	10	F2	F3	10	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates
FIGURE	7-21	Realization	of	Equations	(7-24)	©	Cengage	Learning	2014	A	C	D	215	F1	=	AB	+	ACD	A	B	A	B	C′	F2	=	ABC′	+	CD	C	D	A′	C	D	F3	=	A′CD	+	AB	A	B	FIGURE	7-22	Multiple-Output	Realization	of	Equations	(7-24)	©	Cengage	Learning	2014	A	B	F1	A	C	D	F2	A	B	C′	A′	C	D	F3	for	each	function	does	not	necessarily	lead	to	a	minimum	cost
solution	for	the	circuit	as	a	whole.	When	designing	multiple-output	circuits,	you	should	try	to	minimize	the	total	number	of	gates	required.	If	several	solutions	require	the	same	number	of	gates,	the	one	with	the	minimum	number	of	gate	inputs	should	be	chosen.	The	next	example	further	illustrates	the	use	of	common	terms	to	save	gates.	A	four-input,
three-output	circuit	is	to	be	designed	to	realize	f1	=	Σ	m(2,	3,	5,	7,	8,	9,	10,	11,	13,	15)	f2	=	Σ	m(2,	3,	5,	6,	7,	10,	11,	14,	15)	f3	=	Σ	m(6,	7,	8,	9,	13,	14,	15)	(7-25)	First,	we	plot	maps	for	f1,	f2,	and	f3	(Figure	7-23).	If	each	function	is	minimized	separately,	the	result	is	f1	=	bd	+	b′c	+	ab′	f2	=	c	+	a′bd	abd	10	gates,	f3	=	bc	+	ab′c′	+	%	or	-	25	gate	inputs
ac′d	(7-25(a))	216	Unit	7	FIGURE	7-23	abd	©	Cengage	Learning	2014	ab′c′	ab	cd	ab	00	01	11	00	01	11	1	10	1	10	cd	1	00	ab	00	01	11	10	cd	00	01	11	1	00	1	1	1	01	1	1	1	11	1	1	1	1	11	1	1	1	10	1	1	1	1	10	1	1	1	10	1	01	1	a′bd	By	inspecting	the	maps,	we	can	see	that	terms	a′bd	(from	f2),	abd	(from	f3),	and	ab′c′	(from	f3)	can	be	used	in	f1.	If	bd	is	replaced
with	a′bd	+	abd,	then	the	gate	needed	to	realize	bd	can	be	eliminated.	Because	m10	and	m11	in	f1	are	already	covered	by	b′c,	ab′c′	(from	f3)	can	be	used	to	cover	m8	and	m9,	and	the	gate	needed	to	realize	ab′	can	be	eliminated.	The	minimal	solution	is	therefore	f1	=	a′bd	+	abd	+	ab′c′	+	b′c	f2	=	c	+	a′bd	eight	gates	f3	=	bc	+	ab′c′	+	abd	22	gate
inputs	(7-25(b))	(Terms	which	are	used	in	common	between	two	functions	are	underlined.)	When	designing	multiple-output	circuits,	it	is	sometimes	best	not	to	combine	a	1	with	its	adjacent	1’s,	as	illustrated	in	the	example	of	Figure	7-24.	The	solution	with	the	maximum	number	of	common	terms	is	not	necessarily	best,	as	illustrated	in	the	example	of
Figure	7-25.	Determination	of	Essential	Prime	Implicants	for	Multiple-Output	Realization	As	a	first	step	in	determining	a	minimum	two-level,	multiple-output	realization,	it	is	often	desirable	to	determine	essential	prime	implicants.	However,	we	must	be	careful	because	some	of	the	prime	implicants	essential	to	an	individual	function	may	not	be
essential	to	the	multiple-output	realization.	For	example,	in	Figure	7-23,	bd	is	an	essential	prime	implicant	of	f1	(only	prime	implicant	which	covers	m5),	but	it	is	not	essential	to	the	multiple-output	realization.	The	reason	that	bd	is	not	essential	is	that	m5	also	appears	on	the	f2	map	and,	hence,	might	be	covered	by	a	term	which	is	shared	by	f1	and	f2.
We	can	find	prime	implicants	which	are	essential	to	one	of	the	functions	and	to	the	multiple-output	realization	by	a	modification	of	the	procedure	used	for	the	singleoutput	case.	In	particular,	when	we	check	each	1	on	the	map	to	see	if	it	is	covered	by	only	one	prime	implicant,	we	will	only	check	those	1’s	which	do	not	appear	on	the	other	function
maps.	Thus,	in	Figure	7-24	we	find	that	c′d	is	essential	to	f1	for	the	multiple-output	realization	(because	of	m1),	but	abd	is	not	essential	because	m15	also	217	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	FIGURE	7-24	©	Cengage	Learning	2014	ab	ab	00	01	11	10	cd	00	01	ab	00	01	11	10	cd	1	00	1	1	1	11	1	1	11	1	10	00	01	01	10	1	f1	ab	00	01	11	10
cd	1	11	1	10	©	Cengage	Learning	2014	1	00	01	1	00	1	1	01	1	1	1	f1	10	01	11	1	10	1	1	f2	ab	1	1	cd	00	ab	00	01	11	10	1	01	11	1	1	1	(b)	Solution	requires	an	extra	gate	00	01	11	10	1	11	10	cd	1	f1	ab	00	01	11	10	1	1	f2	ab	cd	1	00	(a)	Best	solution	FIGURE	7-25	00	01	11	10	cd	1	f2	(a)	Solution	with	maximum	number	of	common	terms	requires	8	gates,	26
inputs	10	00	01	11	10	1	00	1	1	01	1	1	1	1	1	11	11	1	cd	1	1	1	10	f1	f2	(b)	Best	solution	requires	7	gates,	18	inputs	and	has	no	common	terms	appears	on	the	f2	map.	In	Figure	7-25,	the	only	minterms	of	f1	which	do	not	appear	on	the	f2	map	are	m2	and	m5.	The	only	prime	implicant	which	covers	m2	is	a′d′;	hence,	a′d′	is	essential	to	f1	in	the	multiple-
output	realization.	Similarly,	the	only	prime	implicant	which	covers	m5	is	a′bc′,	and	a′bc′	is	essential.	On	the	f2	map,	bd′	is	essential.	Why?	Once	the	essential	prime	implicants	for	f1	and	f2	have	been	looped,	selection	of	the	remaining	terms	to	form	the	minimum	solution	is	obvious	in	this	example.	The	techniques	for	finding	essential	prime	implicants
outlined	above	cannot	be	applied	in	a	problem	such	as	Figure	7-23,	where	every	minterm	of	f1	also	appears	on	the	f2	or	f3	map.	A	general	procedure	for	finding	the	minimum	multiple	output	AND-OR	circuit	requires	finding	the	prime	implicants	of	not	only	each	function	but,	also,	of	the	product	of	all	functions.	If	three	functions	f1,	f2,	and	f3	are	being
realized,	then	the	prime	implicants	of	f1,	f2,	f3,	f1	f2,	f1	f3,	f2	f3,	and	f1	f2	f3	are	required.	The	optimum	solution	is	obtained	by	selecting	the	fewest	prime	implicants	from	these	prime	implicants	to	realize	f1,	f2,	and	f3.	This	procedure	is	not	discussed	further	in	this	text.	7.7	Multiple-Output	NAND-	and	NOR-Gate	Circuits	The	procedure	given	in
Section	7.4	for	design	of	single-output,	multi-level	NANDand	NOR-gate	circuits	also	applies	to	multiple-output	circuits.	If	all	of	the	output	gates	are	OR	gates,	direct	conversion	to	a	NAND-gate	circuit	is	possible.	If	all	218	Unit	7	of	the	output	gates	are	AND,	direct	conversion	to	a	NOR-gate	circuit	is	possible.	Figure	7-26	gives	an	example	of	converting
a	two-output	circuit	to	NOR	gates.	Note	that	the	inputs	to	the	first	and	third	levels	of	NOR	gates	are	inverted.	F1	=	[(a	+	b′)c	+	d]	(e′	+	f)	FIGURE	7-26	Multi-Level	Circuit	Conversion	to	NOR	Gates	Level	4	Level	3	a	b′	F2	=	[(a	+	b′)c	+	g′]	(e′	+	f)h	Level	2	Level	1	d	F1	c	e′	f	©	Cengage	Learning	2014	h	F2	g′	(a)	Network	of	AND	and	OR	gates	a	b′	d
F1	c′	e′	f	h′	F2	g′	(b)	NOR	network	Problems	7.1	Using	AND	and	OR	gates,	find	a	minimum	circuit	to	realize	f(a,	b,	c,	d)	=	m4	+	m6	+	m7	+	m8	+	m9	+	m10	(a)	using	two-level	logic	(b)	using	three-level	logic	(12	gate	inputs	minimum)	7.2	Realize	the	following	functions	using	AND	and	OR	gates.	Assume	that	there	are	no	restrictions	on	the	number	of
gates	which	can	be	cascaded	and	minimize	the	number	of	gate	inputs.	(a)	AC′D	+	ADE′	+	BE′	+	BC′	+	A′D′E′	(b)	AE	+	BDE	+	BCE	+	BCFG	+	BDFG	+	AFG	7.3	Find	eight	different	simplified	two-level	gate	circuits	to	realize	F(a,	b,	c,	d)	=	a′bd	+	ac′d	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	219	7.4	Find	a	minimum	three-level	NAND-gate	circuit
to	realize	F(A,	B,	C,	D)	=	Σ	m(5,	10,	11,	12,	13)	(four	gates)	7.5	Realize	Z	=	A′D	+	A′C	+	AB′C′D′	using	four	NOR	gates.	7.6	Realize	Z	=	ABC	+	AD	+	C′D′	using	only	two-input	NAND	gates.	Use	as	few	gates	as	possible.	7.7	Realize	Z	=	AE	+	BDE	+	BCEF	using	only	two-input	NOR	gates.	Use	as	few	gates	as	possible.	7.8	(a)	Convert	the	following	circuit
to	all	NAND	gates,	by	adding	bubbles	and	inverters	where	necessary.	(b)	Convert	to	all	NOR	gates	(an	inverter	at	the	output	is	allowed).	A′	B	E	C	D′	Z	F	G′	7.9	Find	a	two-level,	multiple-output	AND-OR	gate	circuit	to	realize	the	following	functions.	Minimize	the	required	number	of	gates	(six	gates	minimum).	f1	=	ac	+	ad	+	b′d	and	f2	=	a′b′	+	a′d′	+	cd′
7.10	Find	a	minimum	two-level,	multiple-output	AND-OR	gate	circuit	to	realize	these	functions.	f1(a,	b,	c,	d)	=	Σ	m(3,	4,	6,	9,	11)	f2(a,	b,	c,	d)	=	Σ	m(2,	4,	8,	10,	11,	12)	f3(a,	b,	c,	d)	=	Σ	m(3,	6,	7,	10,	11)	(11	gates	minimum)	7.11	Find	a	minimum	two-level	OR-AND	circuit	to	simultaneously	realize	F1(a,	b,	c,	d)	=	Σ	m(2,	3,	8,	9,	14,	15)	F2(a,	b,	c,	d)	=	Σ
m(0,	1,	5,	8,	9,	14,	15)	(minimum	solution	has	eight	gates)	7.12	Find	a	minimum	two-level	OR-AND	circuit	to	realize	the	functions	given	in	Equations	(7-25)	on	page	215	(nine	gates	minimum).	7.13	(a)	Find	a	minimum	two-level	NAND-NAND	circuit	to	realize	the	functions	given	in	Equations	(7-25)	on	page	215.	(b)	Find	a	minimum	two-level	NOR-NOR
circuit	to	realize	the	functions	given	in	Equations	(7-25).	220	Unit	7	7.14	Using	AND	and	OR	gates,	find	a	minimum	circuit	to	realize	f(a,	b,	c,	d)	=	M0	M1	M3	M13	M14	M15	(a)	using	two-level	logic	(b)	using	three-level	logic	(12	gate	inputs	minimum)	7.15	Using	AND	and	OR	gates,	find	a	minimum	two-level	circuit	to	realize	(a)	F	=	a′c	+	bc′d	+	ac′d	(b)
F	=	(b′	+	c)(a	+	b′	+	d)(a	+	b	+	c′	+	d)	(c)	F	=	a′cd′	+	a′bc	+	ad	(d)	F	=	a′b	+	ac	+	bc	+	bd′	7.16	Realize	the	following	functions	using	AND	and	OR	gates.	Assume	that	there	are	no	restrictions	on	the	number	of	gates	which	can	be	cascaded	and	minimize	the	number	of	gate	inputs.	(a)	ABC′	+	ACD	+	A′BC	+	A′C′D	(b)	ABCE	+	ABEF	+	ACD′	+	ABEG	+
ACDE	7.17	A	combinational	switching	circuit	has	four	inputs	(A,	B,	C,	D)	and	one	output	(F).	F	=	0	iff	three	or	four	of	the	inputs	are	0.	(a)	Write	the	maxterm	expansion	for	F.	(b)	Using	AND	and	OR	gates,	find	a	minimum	three-level	circuit	to	realize	F	(five	gates,	12	inputs).	7.18	Find	eight	different	simplified	two-level	gate	circuits	to	realize	(a)	F(w,
x,	y,	z)	=	(x	+	y′	+	z)(x′	+	y	+	z)w	(b)	F(a,	b,	c,	d)	=	Σ	m(4,	5,	8,	9,	13)	7.19	Implement	f(x,	y,	z)	=	Σ	m(0,	1,	3,	4,	7)	as	a	two-level	gate	circuit,	using	a	minimum	number	of	gates.	(a)	Use	AND	gates	and	NAND	gates.	(b)	Use	NAND	gates	only.	7.20	Implement	f(a,	b,	c,	d)	=	Σ	m(3,	4,	5,	6,	7,	11,	15)	as	a	two-level	gate	circuit,	using	a	minimum	number	of
gates.	(a)	Use	OR	gates	and	NOR	gates.	(b)	Use	NOR	gates	only.	7.21	Realize	each	of	the	following	functions	as	a	minimum	two-level	NAND-gate	circuit	and	as	a	minimum	two-level	NOR-gate	circuit.	(a)	F(A,B,C,D)	=	BD′	+	B′CD	+	A′BC	+	A′BC′D	+	B′D′	(b)	f(a,	b,	c,	d)	=	Π	M(0,	1,	7,	9,	10,	13)	·	Π	D(2,	6,	14,	15)	(c)	f(a,	b,	c,	d)	=	Σ	m(0,	2,	5,	10)	+	Σ	d(3,
6,	9,	13,	14,	15)	(d)	F(A,	B,	C,	D,	E)	=	Σ	m(0,	2,	4,	5,	11,	14,	16,	17,	18,	22,	23,	25,	26,	31)	+	Σ	d(3,	19,	20,	27,	28)	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	221	(e)	F(A,	B,	C,	D,	E)	=	Π	M(3,	4,	8,	9,	10,	11,	12,	13,	14,	16,	19,	22,	25,	27)	·	Π	D(17,	18,	28,	29)	(f)	f(a,	b,	c,	d)	=	Π	M(1,	3,	10,	11,	13,	14,	15)	·	Π	D(4,	6)	(g)	f(w,	x,	y,	z)	=	Σ	m(1,	2,	4,	6,
8,	9,	11,	12,	13)	+	Σ	d(0,	7,	10,	15)	7.22	A	combinational	switching	circuit	has	four	inputs	and	one	output	as	shown.	F	=	0	iff	three	or	four	of	the	inputs	are	1.	(a)	Write	the	maxterm	expansion	for	F.	(b)	Using	AND	and	OR	gates,	find	a	minimum	three-level	circuit	to	realize	F	(5	gates,	12	inputs).	A	B	C	D	F	7.23	Implement	f(a,	b,	c,	d)	=	Σ	m(3,	4,	5,	6,	7,
11,	15)	as	a	two-level	gate	circuit,	using	a	minimum	number	of	gates.	(a)	Use	AND	gates	and	NAND	gates.	(b)	Use	OR	gates	and	NAND	gates.	(c)	Use	NAND	gates	only.	7.24	(a)	Use	gate	equivalences	to	convert	the	circuit	into	a	four-level	circuit	containing	only	NAND	gates	and	a	minimum	number	of	inverters.	(Assume	the	inputs	are	available	only	in
uncomplemented	form.)	(b)	Derive	a	minimum	SOP	expression	for	f	.	(c)	By	manipulating	the	expression	for	f	,	find	a	three-level	circuit	containing	only	five	NAND	gates	and	inverters.	A	B	f	C	7.25	(a)	Use	gate	equivalences	to	convert	the	circuit	of	Problem	7.24	into	a	five-level	circuit	containing	only	NOR	gates	and	a	minimum	number	of	inverters.
(Assume	the	inputs	are	available	only	in	uncomplemented	form.)	(b)	Derive	a	minimum	POS	expression	for	f	.	(c)	By	manipulating	the	expression	for	f	,	find	a	four-level	circuit	containing	only	six	NOR	gates	and	inverters.	222	Unit	7	7.26	In	the	circuit,	replace	each	NOR	gate	by	an	AND	or	OR	gate	so	that	the	resulting	circuit	contains	the	fewest
inverters	possible.	Assume	the	inputs	are	available	in	both	true	and	complemented	form.	Do	not	replace	the	exclusive-OR	gates.	A′	H	I′	B	C′	W	J	D′	G	E′	F	7.27	(a)	Convert	the	circuit	shown	into	a	four-level	circuit	only	containing	AND	and	OR	gates	and	a	minimum	number	of	inverters.	(b)	Derive	a	sum-of-products	expression	for	f	.	(c)	Find	a	circuit	that
realizes	f	′	containing	only	NOR	gates	(no	internal	inverters).	(Hint:	Use	gate	conversions	to	convert	the	NAND	gates	in	the	given	circuit	to	NOR	gates.)	B	A	C	D	f	7.28	f(a,	b,	c,	d,	e)	=	Σ	m(2,	3,	6,	12,	13,	16,	17,	18,	19,	22,	24,	25,	27,	28,	29,	31)	(a)	Find	a	minimum	two-level	NOR-gate	circuit	to	realize	f	.	(b)	Find	a	minimum	three-level	NOR-gate
circuit	to	realize	f	.	7.29	Design	a	minimum	three-level	NOR-gate	circuit	to	realize	f	=	a′b′	+	abd	+	acd	7.30	Find	a	minimum	four-level	NAND-	or	NOR-gate	circuit	to	realize	(a)	Z	=	abe′f	+	c′e′f	+	d′e′f	+	gh	(b)	Z	=	(a′	+	b′	+	e	+	f)(c′	+	a′	+	b)(d′	+	a′	+	b)(g	+	h)	7.31	Implement	abde′	+	a′b′	+	c	using	four	NOR	gates.	7.32	Implement	x′yz	+	xvy′w′	+	xvy′z′
using	a	three-level	NAND-gate	circuit.	Multi-Level	Gate	Circuits	NAND	and	NOR	Gates	223	7.33	Design	a	logic	circuit	that	has	a	4-bit	binary	number	as	an	input	and	one	output.	The	output	should	be	1	iff	the	input	is	a	prime	number	(greater	than	1)	or	zero.	(a)	Use	a	two-level	NAND-gate	circuit.	(b)	Use	a	two-level	NOR-gate	circuit.	(c)	Use	only	two-
input	NAND	gates.	7.34	Work	Problem	7.33	for	a	circuit	that	has	an	output	1	iff	the	input	is	evenly	divisible	by	3	(0	is	divisible	by	3).	7.35	Realize	the	following	functions,	using	only	two-input	NAND	gates.	Repeat	using	only	two-input	NOR	gates.	(a)	F	=	A′BC′	+	BD	+	AC	+	B′CD′	(b)	F	=	A′CD	+	AB′C′D	+	ABD′	+	BC	7.36	(a)	Find	a	minimum	circuit	of
two-input	AND	and	two-input	OR	gates	to	realize	F(A,	B,	C,	D)	=	Σ	m(0,	1,	2,	3,	4,	5,	7,	9,	11,	13,	14,	15)	(b)	Convert	your	circuit	to	two-input	NAND	gates.	Add	inverters	where	necessary.	(c)	Repeat	(b),	except	convert	to	two-input	NOR	gates.	7.37	Realize	Z	=	A	[BC′	+	D	+	E(F′	+	GH)]	using	NOR	gates.	Add	inverters	if	necessary.	7.38	Show	that	the
function	of	Equation	(7-22)	can	be	realized	using	four	2-input	NOR	gates	and	one	3-input	NOR	gate.	Assume	the	inputs	are	available	both	complemented	and	uncomplemented.	(No	inverters	are	required.)	7.39	F(A,	B,	C)	equals	1	if	exactly	two	of	A,	B,	and	C	are	1.	(a)	Find	the	minimum	two-level	OR-AND	circuit	for	F.	(b)	Find	a	four-level	circuit	for	F
that	has	six	2-input	NOR	gates.	(c)	Find	the	minimum	two-level	AND-OR	circuit	for	F.	(d)	Find	a	three-level	circuit	for	F	that	has	three	2-input	NAND	gates	and	two	2-input	XOR	gates.	7.40	(a)	Use	gate	conversions	to	convert	the	circuit	below	into	one	containing	NAND	and	XOR	gates.	(b)	Find	the	minimum	two-level	OR-AND	circuit	for	F.	(c)	Find	a
three-level	circuit	for	F	that	has	five	2-input	NAND	gates.	A	B	C	B′	C′	F	A′	224	Unit	7	7.41	In	which	of	the	following	two-level	circuit	forms	can	an	arbitrary	switching	function	be	realized?	Verify	your	answers.	(Assume	the	inputs	are	available	in	both	complemented	and	uncomplemented	form.)	(a)	NOR-AND	(b)	NOR-OR	(c)	NOR-NAND	(d)	NOR-XOR	(e)
NAND-AND	(f)	NAND-OR	(g)	NAND-NOR	(h)	NAND-XOR	7.42	Find	a	minimum	two-level,	multiple-output	AND-OR	gate	circuit	to	realize	these	functions	(eight	gates	minimum).	f1(a,	b,	c,	d)	=	Σ	m(10,	11,	12,	15)	+	Σ	d(4,	8,	14)	f2(a,	b,	c,	d)	=	Σ	m(0,	4,	8,	9)	+	Σ	d(1,	10,	12)	f3(a,	b,	c,	d)	=	Σ	m(4,	11,	13,	14,	15)	+	Σ	d(5,	9,	12)	7.43	Repeat	7.42	for	the
following	functions	(six	gates).	f1(a,	b,	c,	d)	=	Σ	m(2,	3,	5,	6,	7,	8,	10)	f2(a,	b,	c,	d)	=	Σ	m(0,	1,	2,	3,	5,	7,	8,	10)	7.44	Repeat	7.42	for	the	following	functions	(eight	gates).	f1(x,	y,	z)	=	Σ	m(2,	3,	4,	5)	f2(x,	y,	z)	=	Σ	m(1,	3,	5,	6)	f3(x,	y,	z)	=	Σ	m(1,	2,	4,	5,	6)	7.45	(a)	Find	a	minimum	two-level,	multiple-output	OR-AND	circuit	to	realize	f1	=	b′d	+	a′b′	+	c′d
and	f2	=	a′d′	+	bc′	+	bd′.	(b)	Realize	the	same	functions	with	a	minimum	two-level	NAND-NAND	circuit.	7.46	Repeat	Problem	7.45	for	f1	=	ac′	+	b′d	+	c′d	and	f2	=	b′c	+	a′d	+	cd′.	7.47	(a)	Find	a	minimum	two-level,	multiple-output	NAND-NAND	circuit	to	realize	f1	=	Σ	m(3,	6,	7,	11,	13,	14,	15)	and	f2	=	Σ	m(3,	4,	6,	11,	12,	13,	14).	(b)	Repeat	for	a
minimum	two-level,	NOR-NOR	circuit.	7.48	(a)	Find	a	minimum	two-level,	multiple-output	NAND-NAND	circuit	to	realize	f1	=	Σ	m(0,	2,	4,	6,	7,	10,	14)	and	f2	=	Σ	m(0,	1,	4,	5,	7,	10,	14).	(b)	Repeat	for	a	minimum	two-level,	multiple-output	NOR-NOR	circuit.	7.49	Draw	a	multi-level,	multiple-output	circuit	equivalent	to	Figure	7-26(a)	using:	(a)	NAND
and	AND	gates	(b)	NAND	gates	only	(a	direct	conversion	is	not	possible)	UNIT	Combinational	Circuit	Design	and	Simulation	Using	Gates	8	Objectives	1.	Draw	a	timing	diagram	for	a	combinational	circuit	with	gate	delays.	2.	Define	static	0-	and	1-hazards	and	dynamic	hazards.	Given	a	combinational	circuit,	find	all	of	the	static	0-	and	1-hazards.	For
each	hazard,	specify	the	order	in	which	the	gate	outputs	must	switch	in	order	for	the	hazard	to	actually	produce	a	false	output.	3.	Given	a	switching	function,	realize	it	using	a	two-level	circuit	which	is	free	of	static	and	dynamic	hazards	(for	single	input	variable	changes).	4.	Design	a	multiple-output	NAND	or	NOR	circuit	using	gates	with	limited	fan-in.
5.	Explain	the	operation	of	a	logic	simulator	that	uses	four-valued	logic.	6.	Test	and	debug	a	logic	circuit	design	using	a	simulator.	225	226	Unit	8	Study	Guide	1.	Obtain	your	design	problem	assignment	from	your	instructor.	2.	Study	Section	8.1,	Review	of	Combinational	Circuit	Design.	3.	Generally,	it	is	possible	to	redesign	a	circuit	which	has	two
AND	gates	cascaded	or	two	OR	gates	cascaded	so	that	AND	and	OR	gates	alternate.	If	this	is	not	practical,	the	conversion	to	a	NAND	or	NOR	circuit	by	the	techniques	of	Section	7.4	is	still	possible	by	introducing	a	dummy	one-input	OR	(AND)	gate	between	the	two	AND	(OR)	gates.	When	the	conversion	is	carried	out,	the	dummy	gate	becomes	an
inverter.	Try	this	technique	and	convert	the	following	circuit	to	all	NAND	gates.	Alternatively,	you	may	use	the	procedures	given	in	Section	7.5	to	do	the	conversion.	a	b′	c	d′	e	f	g′	4.	Study	Section	8.2,	Design	of	Circuits	with	Limited	Gate	Fan-In.	(a)	If	a	realization	of	a	switching	expression	requires	too	many	inputs	on	one	or	more	gates,	what	should
be	done?	(b)	Assuming	that	all	variables	and	their	complements	are	available	as	inputs	and	that	both	AND	and	OR	gates	are	available,	does	realizing	the	complement	of	an	expression	take	the	same	number	of	gates	and	gate	inputs	as	realizing	the	original	expression?	(c)	When	designing	multiple-output	circuits	with	limited	gate	fan-in,	why	is	the
procedure	of	Section	7.6	of	little	help?	5.	(a)	Study	Section	8.3,	Gate	Delays	and	Timing	Diagrams.	Complete	the	timing	diagram	for	the	given	circuit.	Assume	that	the	AND	gate	has	a	30-nanosecond	(ns)	propagation	delay	and	the	inverter	has	a	20-ns	delay.	A	A	B	B′	Z	B	B′	Z	0	20	40	60	80	100	120	t	(ns)	Combinational	Circuit	Design	and	Simulation
Using	Gates	227	(b)	Work	Problem	8.1.	6.	Study	Section	8.4,	Hazards	in	Combinational	Logic.	(a)	Even	though	all	of	the	gates	in	a	circuit	are	of	the	same	type,	each	individual	gate	may	have	a	different	propagation	delay.	For	example,	for	one	type	of	TTL	NAND	gate	the	manufacturer	specifies	a	minimum	propagation	delay	of	5	ns	and	a	maximum
delay	of	30	ns.	Sketch	the	gate	outputs	for	the	following	circuit	when	the	x	input	changes	from	1	to	0,	assuming	the	following	gate	delays:	(a)	gate	1–5	ns	(b)	gate	2–20	ns	(c)	gate	3–10	ns	x	x	1	0	1	2	y1	y1	3	Z	y2	y2	Z	0	10	20	30	40	50	t	(ns)	(b)	Define	static	0-hazard,	static	1-hazard,	and	dynamic	hazard.	(c)	Using	a	Karnaugh	map,	explain	why	F	=	a′b
+	ac	has	a	1-hazard	for	the	input	change	abc	=	011	to	111,	but	not	for	011	to	010.	Then	explain	it	without	using	the	map.	(d)	Explain	why	F	=	(a′	+	b′)(b	+	c)	has	a	0-hazard	for	the	input	change	abc	=	100	to	110,	but	not	for	100	to	000.	(e)	Under	what	condition	does	a	sum-of-products	expression	represent	a	hazard-free,	two-level	AND-OR	circuit?	(f)
Under	what	condition	does	a	product-of-sums	expression	represent	a	hazard-free,	two-level	OR-AND	circuit?	(g)	If	a	hazard-free	circuit	of	AND	and	OR	gates	is	transformed	to	NAND	or	NOR	gates	using	the	procedure	given	in	Unit	7,	why	will	the	results	be	hazard-free?	(h)	Work	Problems	8.2	and	8.3.	228	Unit	8	7.	Study	Section	8.5,	Simulation	and
Testing	of	Logic	Circuits.	(a)	Verify	that	Table	8-1	is	correct.	Consider	both	the	case	where	the	unknown	value,	X,	is	0	and	the	case	where	it	is	1.	(b)	The	following	circuit	was	designed	to	realize	the	function	F	=	[A′	+	B	+	C′D][A	+	B′	+	(C′	+	D′)(C	+	D)]	C	D′	C′	D′	C	D	1	2	3	G	4	1	A′	B	A	0	B′	5	6	0	7	0	F	1	0	When	a	student	builds	the	circuit	in	lab,	he
finds	that	when	A	=	C	=	0	and	B	=	D	=	1,	the	output	F	has	the	wrong	value	and	that	the	gate	outputs	are	as	shown.	Determine	some	possible	causes	of	the	incorrect	output	if	G	=	0	and	if	G	=	1	(c)	Work	Problems	8.4	and	8.5.	8.	Study	your	assigned	design	problem	and	prepare	a	design	which	meets	specifications.	Note	that	only	two-,	three-,	and	four-
input	NAND	gates	(or	NOR	gates	as	specified)	and	inverters	are	available	for	this	project;	therefore,	factoring	some	of	the	equations	will	be	necessary.	Try	to	make	an	economical	design	by	using	common	terms;	however,	do	not	waste	time	trying	to	get	an	absolute	minimum	solution.	When	counting	gates,	count	both	NAND	(or	NOR)	gates	and
inverters,	but	do	not	count	the	inverters	needed	for	the	input	variables.	9.	Check	your	design	carefully	before	simulating	it.	Test	it	on	paper	by	applying	some	input	combinations	of	0’s	and	1’s	and	tracing	the	signals	through	to	make	sure	that	the	outputs	are	correct.	If	you	have	a	CAD	program	such	as	LogicAid	available,	enter	the	truth	table	for	your
design	into	the	computer,	derive	the	minimum	two-level	equations,	and	compare	them	with	your	solution.	10.	In	designing	multi-level,	multiple-output	circuits	of	the	type	used	in	the	design	problems	in	this	unit,	it	is	very	difficult	and	time-consuming	to	find	a	minimum	solution.	You	are	not	expected	to	find	the	best	possible	solution	to	these	problems.
All	of	these	solutions	involve	some	“tricks,”	and	it	is	unlikely	that	you	could	find	them	without	trying	a	large	number	of	different	ways	of	factoring	your	equations.	Therefore,	if	you	already	have	an	acceptable	solution,	do	not	waste	time	trying	to	find	the	minimum	solution.	Because	integrated	circuit	gates	are	quite	inexpensive,	it	is	not	good
engineering	practice	to	spend	a	large	amount	of	time	finding	the	absolute	minimum	solution	unless	a	very	large	number	of	units	of	the	same	type	are	to	be	manufactured.	11.	Obtain	a	Unit	8	supplement	from	your	instructor	and	follow	the	instructions	therein	regarding	simulating	and	testing	your	design.	Combinational	Circuit	Design	and	Simulation
Using	Gates	8.1	Review	of	Combinational	Circuit	Design	The	first	step	in	the	design	of	a	combinational	switching	circuit	is	usually	to	set	up	a	truth	table	which	specifies	the	output(s)	as	a	function	of	the	input	variables.	For	n	input	variables	this	table	will	have	2n	rows.	If	a	given	combination	of	values	for	the	input	variables	can	never	occur	at	the
circuit	inputs,	the	corresponding	output	values	are	don’t-cares.	The	next	step	is	to	derive	simplified	algebraic	expressions	for	the	output	functions	using	Karnaugh	maps,	the	Quine-McCluskey	method,	or	a	similar	procedure.	In	some	cases,	particularly	if	the	number	of	variables	is	large	and	the	number	of	terms	is	small,	it	may	be	desirable	to	go
directly	from	the	problem	statement	to	algebraic	equations,	without	writing	down	a	truth	table.	The	resulting	equations	can	then	be	simplified	algebraically.	The	simplified	algebraic	expressions	are	then	manipulated	into	the	proper	form,	depending	on	the	type	of	gates	to	be	used	in	realizing	the	circuit.	The	number	of	levels	in	a	gate	circuit	is	equal	to
the	maximum	number	of	gates	through	which	a	signal	must	pass	when	going	between	the	input	and	output	terminals.	The	minimum	sum	of	products	(or	product	of	sums)	leads	directly	to	a	minimum	two-level	gate	circuit.	However,	in	some	applications	it	is	desirable	to	increase	the	number	of	levels	by	factoring	(or	multiplying	out)	because	this	may
lead	to	a	reduction	in	the	number	of	gates	or	gate	inputs.	When	a	circuit	has	two	or	more	outputs,	common	terms	in	the	output	functions	can	often	be	used	to	reduce	the	total	number	of	gates	or	gate	inputs.	If	each	function	is	minimized	separately,	this	does	not	always	lead	to	a	minimum	multiple-output	circuit.	For	a	two-level	circuit,	Karnaugh	maps
of	the	output	functions	can	be	used	to	find	the	common	terms.	All	of	the	terms	in	the	minimum	multiple-output	circuit	will	not	necessarily	be	prime	implicants	of	the	individual	functions.	When	designing	circuits	with	three	or	more	levels,	looking	for	common	terms	on	the	Karnaugh	maps	may	be	of	little	value.	In	this	case,	the	designer	will	often
minimize	the	functions	separately	and,	then,	use	ingenuity	to	factor	the	expressions	in	such	a	way	to	create	common	terms.	Minimum	two-level	AND-OR,	NAND-NAND,	OR-NAND,	and	NOR-OR	circuits	can	be	realized	using	the	minimum	sum	of	products	as	a	starting	point.	Minimum	two-level	OR-AND,	NOR-NOR,	AND-NOR,	and	NAND-AND	circuits
can	be	realized	using	the	minimum	product	of	sums	as	a	starting	point.	Design	of	multi-level,	229	230	Unit	8	multiple-output	NAND-gate	circuits	is	most	easily	accomplished	by	first	designing	a	circuit	of	AND	and	OR	gates.	Usually,	the	best	starting	point	is	the	minimum	sumof-products	expressions	for	the	output	functions.	These	expressions	are	then
factored	in	various	ways	until	an	economical	circuit	of	the	desired	form	can	be	found.	If	this	circuit	has	an	OR	gate	at	each	output	and	is	arranged	so	that	an	AND-	gate	(or	ORgate)	output	is	never	connected	to	the	same	type	of	gate,	a	direct	conversion	to	a	NAND-gate	circuit	is	possible.	Conversion	is	accomplished	by	replacing	all	of	the	AND	and	OR
gates	with	NAND	gates	and	then	inverting	any	literals	which	appear	as	inputs	to	the	first,	third,	fifth,	.	.	.	levels	(output	gates	are	the	first	level).	If	the	AND-OR	circuit	has	an	AND-gate	(or	OR-gate)	output	connected	to	the	same	type	of	gate,	then	extra	inverters	must	be	added	in	the	conversion	process	(see	Section	7.5,	Circuit	Conversion	Using
Alternative	Gate	Symbols).	Similarly,	design	of	multi-level,	multiple-output	NOR-gate	circuits	is	most	easily	accomplished	by	first	designing	a	circuit	of	AND	and	OR	gates.	In	this	case	the	best	starting	point	is	usually	the	minimum	sum-of-products	expressions	for	the	complements	of	the	output	functions.	After	factoring	these	expressions	to	the	desired
form,	they	are	then	complemented	to	get	expressions	for	the	output	functions,	and	the	corresponding	circuit	of	AND	and	OR	gates	is	drawn.	If	this	circuit	has	an	AND	gate	at	each	output,	and	an	AND-gate	(or	OR-gate)	output	is	never	connected	to	the	same	type	of	gate,	a	direct	conversion	to	a	NOR-gate	circuit	is	possible.	Otherwise,	extra	inverters
must	be	added	in	the	conversion	process.	8.2	Design	of	Circuits	with	Limited	Gate	Fan-In	In	practical	logic	design	problems,	the	maximum	number	of	inputs	on	each	gate	(or	the	fan-in)	is	limited.	Depending	on	the	type	of	gates	used,	this	limit	may	be	two,	three,	four,	eight,	or	some	other	number.	If	a	two-level	realization	of	a	circuit	requires	more	gate
inputs	than	allowed,	factoring	the	logic	expression	to	obtain	a	multi-level	realization	is	necessary.	Example	Realize	f(a,	b,	c,	d)	=	Σm(0,	3,	4,	5,	8,	9,	10,	14,	15)	using	three-input	NOR	gates.	cd	ab	00	01	11	10	00	1	1	0	1	01	0	1	0	1	11	1	0	1	0	10	0	0	1	1	map	of	f	:	f	′	=	a′b′c′d	+	ab′cd	+	abc′	+	a	′bc	+	a	′cd′	Combinational	Circuit	Design	and	Simulation
Using	Gates	231	As	can	be	seen	from	the	preceding	expression,	a	two-level	realization	requires	two	four-input	gates	and	one	five-input	gate.	The	expression	for	f	′	is	factored	to	reduce	the	maximum	number	of	gate	inputs	to	three	and,	then,	it	is	complemented:	f	′	=	b′d(a′c′	+	ac)	+	a′c(b	+	d′)	+	abc′	f	=	[b	+	d′	+	(a	+	c)(a′	+	c′)][a	+	c′	+	b′d][a′	+	b′	+
c]	The	resulting	NOR-gate	circuit	is	shown	in	Figure	8-1.	FIGURE	8-1	a	c′	b	©	Cengage	Learning	2014	d′	a′	b′	c	a	c	f	b	d′	a′	c′	The	techniques	for	designing	two-level,	multiple-output	circuits	given	in	Section	7.6	are	not	very	effective	for	designing	multiple-output	circuits	with	more	than	two	levels.	Even	if	the	two-level	expressions	had	common	terms,
most	of	these	common	terms	would	be	lost	when	the	expressions	were	factored.	Therefore,	when	designing	multiple-output	circuits	with	more	than	two	levels,	it	is	usually	best	to	minimize	each	function	separately.	The	resulting	two-level	expressions	must	then	be	factored	to	increase	the	number	of	levels.	This	factoring	should	be	done	in	such	a	way
as	to	introduce	common	terms	wherever	possible.	Example	Realize	the	functions	given	in	Figure	8-2,	using	only	two-input	NAND	gates	and	inverters.	If	we	minimize	each	function	separately,	the	result	is	f1	=	b′c′	+	ab′	+	a′b	f2	=	b′c′	+	bc	+	a′b	f3	=	a′b′c	+	ab	+	bc′	FIGURE	8-2	©	Cengage	Learning	2014	bc	a	00	bc	a	0	1	1	1	00	1	01	01	0	1	1	1	a	1	11	1
10	1	10	1	1	f2	=	Σ	m(0,	2,	3,	4,	7)	0	1	00	01	11	f1	=	Σ	m(0,	2,	3,	4,	5)	bc	1	1	11	10	1	1	f3	=	Σ	m(1,	2,	6,	7)	Unit	8	Each	function	requires	a	three-input	OR	gate,	so	we	will	factor	to	reduce	the	number	of	gate	inputs:	f1	=	b′(a	+	c′)	+	a′b	f2	=	b(a′	+	c)	+	b′c′	f3	=	a′b′c	+	b(a	+	c′)	or	f2	=	(b′	+	c)(b	+	c′)	+	a′b	The	second	expression	for	f2	has	a	term	common
to	f1,	so	we	will	choose	the	second	expression.	We	can	eliminate	the	remaining	three-input	gate	from	f3	by	noting	that	a′b′c	=	a′(b′c)	=	a′(b	+	c′)′	Figure	8-3(a)	shows	the	resulting	circuit,	using	common	terms	a′b	and	a	+	c′.	Because	each	output	gate	is	an	OR,	the	conversion	to	NAND	gates,	as	shown	in	Figure	8-3(b),	is	straightforward.	FIGURE	8-3
Realization	of	Figure	8-2	a	c′	b′	©	Cengage	Learning	2014	232	c	b	c′	b′	f1	a′	b	f2	b′c	f3	a′	b	a′	c	b	c′	b′	c	b′	f1	a′	b	f2	b′c	f3	a′	b	(a)	(b)	8.3	Gate	Delays	and	Timing	Diagrams	When	the	input	to	a	logic	gate	is	changed,	the	output	will	not	change	instantaneously.	The	transistors	or	other	switching	elements	within	the	gate	take	a	finite	time	to	react	to	a
change	in	input,	so	that	the	change	in	the	gate	output	is	delayed	with	respect	to	the	input	change.	Figure	8-4	shows	possible	input	and	output	waveforms	for	an	inverter.	If	the	change	in	output	is	delayed	by	time,	ε	,	with	respect	to	the	input,	we	say	that	this	gate	has	a	propagation	delay	of	ε.	In	practice,	the	propagation	delay	for	a	0	to	1	output
change	may	be	different	than	the	delay	for	a	1	to	0	change.	Propagation	delays	for	integrated	circuit	gates	may	be	as	short	as	a	few	nanoseconds	(1	nanosecond	=	10	−9	second),	and	in	many	cases	these	delays	can	be	neglected.	However,	in	the	analysis	of	some	types	of	sequential	circuits,	even	short	delays	may	be	important.	Timing	diagrams	are
frequently	used	in	the	analysis	of	sequential	circuits.	These	diagrams	show	various	signals	in	the	circuit	as	a	function	of	time.	Several	variables	are	usually	plotted	with	the	same	time	scale	so	that	the	times	at	which	these	variables	change	with	respect	to	each	other	can	easily	be	observed.	Combinational	Circuit	Design	and	Simulation	Using	Gates
FIGURE	8-4	Propagation	Delay	in	an	Inverter	233	X	©	Cengage	Learning	2014	Time	X	X′	X′	Time	ε1	ε2	Figure	8-5	shows	the	timing	diagram	for	a	circuit	with	two	gates.	We	will	assume	that	each	gate	has	a	propagation	delay	of	20	ns	(nanoseconds).	This	timing	diagram	indicates	what	happens	when	gate	inputs	B	and	C	are	held	at	constant	values	1
and	0,	respectively,	and	input	A	is	changed	to	1	at	t	=	40	ns	and	then	changed	back	to	0	at	t	=	100	ns.	The	output	of	gate	G1	changes	20	ns	after	A	changes,	and	the	output	of	gate	G2	changes	20	ns	after	G1	changes.	Figure	8-6	shows	a	timing	diagram	for	a	circuit	with	an	added	delay	element.	The	input	X	consists	of	two	pulses,	the	first	of	which	is	2
microseconds	(2	×	10	−6	second)	wide	and	the	second	is	3	microseconds	wide.	The	delay	element	has	an	output	Y	FIGURE	8-5	Timing	Diagram	for	AND-NOR	Circuit	©	Cengage	Learning	2014	A	G1	G1	A	B=1	G2	C	=0	20	ns	20	ns	G2	0	20	40	60	80	100	120	140	t	(ns)	20	ns	20	ns	which	is	the	same	as	the	input	except	that	it	is	delayed	by	1
microsecond.	That	is,	Y	changes	to	a	1	value	1	microsecond	after	the	rising	edge	of	the	X	pulse	and	returns	to	0	1	microsecond	after	the	falling	edge	of	the	X	pulse.	The	output	(Z)	of	the	AND	gate	should	be	1	during	the	time	interval	in	which	both	X	and	Y	are	1.	If	we	assume	a	small	propagation	delay	in	the	AND	gate	(ε),	then	Z	will	be	as	shown	in
Figure	8-6.	FIGURE	8-6	Timing	Diagram	for	Circuit	with	Delay	Rising	edge	Falling	edge	3	μs	©	Cengage	Learning	2014	2	μs	1	X	0	X	1	μs	Delay	Y	Z	1	Y	1	Z	0	1	μs	1	μss	0	ε	0	1	2	3	4	5	6	7	Time	(microseconds)	8	9	10	234	Unit	8	8.4	Hazards	in	Combinational	Logic	When	the	input	to	a	combinational	circuit	changes,	unwanted	switching	transients	may
appear	in	the	output.	These	transients	occur	when	different	paths	from	input	to	output	have	different	propagation	delays.	If,	in	response	to	any	single	input	change	and	for	some	combination	of	propagation	delays,	a	circuit	output	may	momentarily	go	to	0	when	it	should	remain	a	constant	1,	we	say	that	the	circuit	has	a	static	1-hazard.	Similarly,	if	the
output	may	momentarily	go	to	1	when	it	should	remain	a	0,	we	say	that	the	circuit	has	a	static	0-hazard.	If,	when	the	output	is	supposed	to	change	from	0	to	1	(or	1	to	0),	the	output	may	change	three	or	more	times,	we	say	that	the	circuit	has	a	dynamic	hazard.	Figure	8-7	shows	possible	outputs	from	a	circuit	with	hazards.	In	each	case	the	steady-
state	output	of	the	circuit	is	correct,	but	a	switching	transient	appears	at	the	circuit	output	when	the	input	is	changed.	Types	of	Hazards	FIGURE	8-7	©	Cengage	Learning	2014	1	1	0	(a)	Static	1-hazard	1	0	1	1	0	(b)	Static	0-hazard	0	1	0	1	0	0	(c)	Dynamic	hazards	Figure	8-8(a)	illustrates	a	circuit	with	a	static	1-hazard.	If	A	=	C	=	1,	then	F	=	B	+	B′	=	1,
so	the	F	output	should	remain	a	constant	1	when	B	changes	from	1	to	0.	However,	as	shown	in	Figure	8-8(b),	if	each	gate	has	a	propagation	delay	of	10	ns,	E	will	go	to	0	before	D	goes	to	1,	resulting	in	a	momentary	0	(a	glitch	caused	by	the	1-hazard)	appearing	at	the	output	F.	Note	that	right	after	B	changes	to	0,	both	the	inverter	input	(B)	and	output
(B′)	are	0	until	the	propagation	delay	has	elapsed.	During	this	period,	both	terms	in	the	equation	for	F	are	0,	so	F	momentarily	goes	to	0.	Note	that	hazards	are	properties	of	the	circuit	and	are	independent	of	the	delays	existing	in	the	circuit.	If	the	circuit	is	free	of	hazards,	then	for	any	combination	of	delays	that	might	exist	in	the	circuit	and	for	any
single	input	change,	the	output	will	not	contain	a	transient.	On	the	other	hand,	if	a	circuit	contains	a	hazard,	then	there	is	some	combination	of	delays	and	some	input	change	for	which	the	circuit	output	contains	a	transient.	The	combination	of	delays	that	produces	the	transient	may	or	may	not	be	likely	to	occur	in	an	implementation	of	the	circuit;	in
some	cases	it	is	very	unlikely	that	such	delays	would	occur.	Besides	depending	on	the	delays	existing	in	a	circuit,	the	occurrence	of	transients	depends	on	how	gates	respond	to	input	changes.	In	some	cases,	if	multiple	input	changes	to	a	gate	occur	within	a	short	time	period,	a	gate	may	not	respond	to	the	input	changes.	For	example,	in	Figure	8-8
assume	the	inverter	has	a	delay	of	2	ns	rather	than	10	ns.	Then	the	D	and	E	changes	reaching	the	output	OR	gate	are	2	ns	apart,	in	which	case	the	OR	gate	may	not	generate	the	0	glitch.	A	gate	exhibiting	Combinational	Circuit	Design	and	Simulation	Using	Gates	FIGURE	8-8	Detection	of	a	1-Hazard	©	Cengage	Learning	2014	A	A	BC	0	1	00	0	1	01	0	1
11	1	1	10	0	0	D	B	F	235	1-hazard	E	C	F	=	AB′	+	BC	(a)	Circuit	with	a	static	1-hazard	B	D	E	F	0	ns	10	ns	20	ns	30	ns	40	ns	50	ns	60	ns	(b)	Timing	chart	this	behavior	is	said	to	have	an	inertial	delay.	Quite	often	the	inertial	delay	value	is	assumed	to	be	the	same	as	the	propagation	delay	of	the	gate;	if	this	is	the	case,	the	circuit	of	Figure	8-8	will	generate
the	0	glitch	only	for	inverter	delays	greater	than	10	ns.	In	contrast,	if	a	gate	always	responds	to	input	changes	(with	a	propagation	delay),	no	matter	how	closely	spaced	the	input	changes	may	be,	the	gate	is	said	to	have	an	ideal	or	transport	delay.	If	the	OR	gate	in	Figure	8-8	has	an	ideal	delay,	then	the	0	glitch	would	be	generated	for	any	nonzero
value	of	the	inverter	delay.	(Inertial	and	transport	delay	models	are	discussed	more	in	Unit	10.)	Unless	otherwise	noted,	the	examples	and	problems	in	this	unit	assume	that	gates	have	an	ideal	delay.	Hazards	can	be	detected	using	a	Karnaugh	map	(Figure	8-8(a)).	As	seen	on	the	map,	no	loop	covers	both	minterms	ABC	and	AB′C.	So	if	A	=	C	=	1	and	B
changes,	both	terms	can	momentarily	go	to	0,	resulting	in	a	glitch	in	F.	We	can	detect	hazards	in	a	two-level	AND-OR	circuit,	using	the	following	procedure:	1.	2.	3.	Write	down	the	sum-of-products	expression	for	the	circuit.	Plot	each	term	on	the	map	and	loop	it.	If	any	two	adjacent	1’s	are	not	covered	by	the	same	loop,	a	1-hazard	exists	for	the
transition	between	the	two	1’s.	For	an	n-variable	map,	this	transition	occurs	when	one	variable	changes	and	the	other	n	−	1	variables	are	held	constant.	If	we	add	a	loop	to	the	map	of	Figure	8-8(a)	and,	then,	add	the	corresponding	gate	to	the	circuit	(Figure	8-9),	this	eliminates	the	hazard.	The	term	AC	remains	1	while	B	is	changing,	so	no	glitch	can
appear	in	the	output.	Note	that	F	is	no	longer	a	minimum	sum	of	products.	236	Unit	8	FIGURE	8-9	Circuit	with	Hazard	Removed	A	©	Cengage	Learning	2014	B	A	BC	0	1	00	0	1	01	0	1	11	1	1	10	0	0	F	C	A	F	=	AB′	+	BC	+	AC	Figure	8-10(a)	shows	a	circuit	with	several	0-hazards.	The	product-of-sums	representation	for	the	circuit	output	is	F	=	(A	+	C)(A′
+	D′)(B′	+	C′	+	D)	The	Karnaugh	map	for	this	function	(Figure	8-10(b))	shows	four	pairs	of	adjacent	0’s	that	are	not	covered	by	a	common	loop	as	indicated	by	the	arrows.	Each	of	these	pairs	corresponds	to	a	0-hazard.	For	example,	when	A	=	0,	B	=	1,	D	=	0,	and	C	changes	from	0	to	1,	a	spike	may	appear	at	the	Z	output	for	some	combination	of	gate
delays.	The	timing	diagram	of	Figure	8-10(c)	illustrates	this,	assuming	gate	delays	of	3	ns	for	each	inverter	and	of	5	ns	for	each	AND	gate	and	each	OR	gate.	FIGURE	8-10	Detection	of	a	Static	0-Hazard	©	Cengage	Learning	2014	at	5	ns,	0	→1	C	1	A	at	10	ns,	0	→	1	W	2	D	at	15	ns,	0→1	at	18	ns,	1→	0	Z	4	AB	00	CD	01	00	0	0	01	0	0	11	B	3	X	at	8	ns,	1→	0
Y	at	13	ns,	1→	0	0	10	(a)	Circuit	with	a	static	0-hazard	W	X	Y	Z	5	8	10	0	0	0	0	0	(b)	Karnaugh	map	for	circuit	of	(a)	C	0	11	10	13	15	18	20	(c)	Timing	diagram	illustrating	0-hazard	of	(a)	Combinational	Circuit	Design	and	Simulation	Using	Gates	237	We	can	eliminate	the	0-hazards	by	looping	additional	prime	implicants	that	cover	the	adjacent	0’s	that
are	not	already	covered	by	a	common	loop.	This	requires	three	additional	loops	as	shown	in	Figure	8-11.	The	resulting	equation	is	F	=	(A	+	C)(A′	+	D′)(B′	+	C′	+	D)(C	+	D′)(A	+	B′	+	D)(A′	+	B′	+	C′)	and	the	resulting	circuit	requires	seven	gates	in	addition	to	the	inverters.	FIGURE	8-11	Karnaugh	Map	Removing	Hazards	of	Figure	8-10	©	Cengage
Learning	2014	AB	00	01	00	0	0	01	0	0	CD	11	10	0	11	10	0	0	0	0	0	Hazards	in	circuits	with	more	than	two	levels	can	be	determined	by	deriving	either	a	SOP	or	POS	expression	for	the	circuit	that	represents	a	two-level	circuit	containing	the	same	hazards	as	the	original	circuit.	The	SOP	or	POS	expression	is	derived	in	the	normal	manner	except	that	the
complementation	laws	are	not	used,	i.e.,	xx′	=	0	and	x	+	x′	=	1	are	not	used.	Consequently,	the	resulting	SOP	(POS)	expression	may	contain	products	(sums)	of	the	form	xx′α	(x	+	x′	+	β).	(α	is	a	product	of	literals	or	it	may	be	null;	β	is	a	sum	of	literals	or	it	may	be	empty.)	The	complementation	laws	are	not	used	because	we	are	analyzing	the	circuit
behavior	resulting	from	an	input	change.	As	that	input	change	propagates	through	the	circuit,	at	a	given	point	in	time	a	line	tending	toward	the	value	x	may	not	have	the	value	that	is	the	complement	of	a	line	tending	toward	the	value	x′.	In	the	SOP	expression,	a	product	of	the	form	xx′α	represents	a	pseudo	gate	that	may	temporarily	have	the	output
value	1	as	x	changes	and	if	α	=	1.	Given	the	SOP	expression,	the	circuit	is	analyzed	for	static	1-hazards	the	same	as	for	a	two-level	AND-OR	circuit,	i.e.,	the	products	are	mapped	on	a	Karnaugh	map	and	if	two	1’s	are	adjacent	on	the	map	and	not	included	in	one	of	the	products,	they	correspond	to	a	static	1-hazard.	The	circuit	can	have	a	static	0-hazard
or	a	dynamic	hazard	only	if	the	SOP	expression	contains	a	term	of	the	form	xx′α.	A	static	0-hazard	exists	if	there	are	two	adjacent	0’s	on	the	Karnaugh	map	for	which	α	=	1	and	the	two	input	combinations	differ	just	in	the	value	of	x.	A	dynamic	hazard	exists	if	there	is	a	term	of	the	form	xx′α	and	two	conditions	are	satisfied:	(1)	There	are	adjacent	input
combinations	on	the	Karnaugh	map	differing	in	the	value	of	x,	with	α	=	1	and	with	opposite	function	values,	and	(2)	for	these	input	combinations	the	change	in	x	propagates	over	at	least	three	paths	through	the	circuit.	238	Unit	8	As	an	example	consider	the	circuit	of	Figure	7-7.	The	expression	for	the	circuit	output	is	f	=	(c′	+	ad′	+	bd′)(c	+	a′d	+	bd)
=	cc′	+	acd′	+	bcd′	+	a′c′d	+	aa′dd′	+	a′bdd′	+	bc′d	+	abdd′	+	bdd′	=	cc′	+	acd′	+	bcd′	+	a′c′d	+	aa′dd′	+	bc′d	+	bdd′	The	Karnaugh	map	for	this	function	is	shown	as	the	circled	1’s	in	Figure	7-3.	It	is	derived	in	the	normal	way	ignoring	the	product	terms	containing	both	a	variable	and	its	complement.	The	circuit	does	not	contain	any	static	1-hazards
because	each	pair	of	adjacent	1’s	are	covered	by	one	of	the	product	terms.	Potentially,	the	terms	cc′	and	bdd′	may	cause	either	static	0-	or	dynamic	hazards	or	both;	the	first	for	c	changing	and	the	second	for	d	changing.	(The	term	aa′dd′	cannot	cause	either	hazard	because,	for	example,	if	a	changes	the	dd′	part	of	the	product	forces	it	to	0.)	With	a	=	0,
b	=	0,	and	d	=	0	and	c	changing,	the	circuit	output	is	0	before	and	after	the	change,	and	because	the	cc′	term	can	cause	the	output	to	temporarily	become	1,	this	transition	is	a	static	0-hazard.	Similarly,	a	change	in	c,	with	a	=	1,	b	=	0,	and	d	=	1,	is	a	static	0-hazard.	The	cc′	term	cannot	cause	a	dynamic	hazard	because	there	are	only	two	physical
paths	from	input	c	to	the	circuit	output.	The	term	bdd′	can	cause	a	static	0-	or	dynamic	hazard	only	if	b	=	1.	From	the	Karnaugh	map,	it	is	seen	that,	with	b	=	1	and	d	changing,	the	circuit	output	changes	for	any	combination	of	a	and	c,	so	the	only	possibility	is	that	of	a	dynamic	hazard.	There	are	four	physical	paths	from	d	to	the	circuit	output,	so	a
dynamic	hazard	exists	if	a	d	change	can	propagate	over	at	least	three	of	those	paths.	However,	this	cannot	happen	because,	with	c	=	0,	propagation	over	the	upper	two	paths	is	blocked	at	the	upper	OR	gate	because	c′	=	1	forces	the	OR	gate	output	to	be	1,	and	with	c	=	1	propagation	over	the	lower	two	paths	is	blocked	at	the	lower	OR	gate.	The
circuit	does	not	contain	a	dynamic	hazard.	Another	approach	to	finding	the	hazards	is	as	follows:	If	we	factor	the	original	expression	for	the	circuit	output	(without	using	the	complementation	laws),	we	get	f	=	(c′	+	a	+	b)(c′	+	d′)(c	+	a′	+	b)(c	+	d)	Plotting	the	0’s	of	f	from	this	expression	on	a	Karnaugh	map	reveals	that	there	are	0-hazards	when	a	=	b
=	d	=	0	and	c	changes,	and	also	when	b	=	0,	a	=	d	=	1,	and	c	changes.	An	expression	of	the	form	x	+	x′	does	not	appear	in	any	sum	term	of	f,	and	this	indicates	that	there	are	no	1-hazards	or	dynamic	hazards.	As	another	example	of	finding	static	and	dynamic	hazards	from	a	SOP	expression,	consider	the	circuit	of	Figure	8-12(a).	The	SOP	expression
for	f	is	f	=	(A′C′	+	B′C)	(C	+	D)	=	A′CC′	+	A′C′D	+	B′C	The	Karnaugh	map	for	f	in	Figure	8-12(b)	shows	that	f	=	1	for	the	input	combinations	(A,	B,	C,	D)	=	(0,	0,	0,	1)	and	(0,	0,	1,	1)	and	neither	product	of	f	covers	these	two	minterms;	hence,	these	two	input	combinations	imply	a	static	1-hazard	for	C	changing.	The	product	A′CC′	in	f	indicates	the
possibility	of	a	static	0-hazard	and	a	dynamic	hazard	for	A	=	0	and	C	changing.	The	Karnaugh	map	shows	that	when	f	=	0,	Combinational	Circuit	Design	and	Simulation	Using	Gates	f	FIGURE	8-12	Hazard	Example	©	Cengage	Learning	2014	A	f	C	B	D	(a)	239	AB	CD	00	01	11	10	00	0	0	0	0	01	1	1	0	0	11	1	0	0	1	10	1	0	0	1	(b)	the	two	input	combinations
(0,	1,	0,	0)	and	(0,	1,	1,	0)	meet	these	conditions	and,	hence,	they	imply	a	static	0-hazard.	The	Karnaugh	map	shows	two	pairs	of	input	combinations	with	f	changing	for	A	=	0	and	C	changing—namely,	(0,	0,	0,	0),	(0,	0,	1,	0),	and	(0,	1,	0,	1),	(0,	1,	1,	1).	In	order	for	these	to	be	dynamic	hazards,	the	C	change	must	propagate	over	three	or	more	paths	to
the	output.	The	circuit	shows	that	propagation	over	the	three	paths	requires	B	=	0	and	D	=	0	as	well	as	A	=	0;	thus,	a	dynamic	hazard	only	occurs	for	(0,	0,	0,	0)	and	(0,	0,	1,	0).	For	(0,	1,	0,	1)	and	(0,	1,	1,	1),	the	C	change	only	propagates	over	one	path,	and	f	can	only	change	once.	To	design	a	circuit	which	is	free	of	static	and	dynamic	hazards,	the
following	procedure	may	be	used:	1.	2.	Find	a	sum-of-products	expression	(F	t)	for	the	output	in	which	every	pair	of	adjacent	1’s	is	covered	by	a	1-term.	(The	sum	of	all	prime	implicants	will	always	satisfy	this	condition.)	A	two-level	AND-OR	circuit	based	on	this	F	t	will	be	free	of	1-,	0-,	and	dynamic	hazards.	If	a	different	form	of	the	circuit	is	desired,
manipulate	F	t	to	the	desired	form	by	simple	factoring,	DeMorgan’s	laws,	etc.	Treat	each	xi	and	x′i	as	independent	variables	to	prevent	introduction	of	hazards.	Alternatively,	you	can	start	with	a	product-of-sums	expression	in	which	every	pair	of	adjacent	0’s	is	covered	by	a	0-term,	and	follow	the	dual	procedure	to	design	a	hazard-free	two-level	OR-
AND	circuit.	It	should	be	emphasized	that	the	discussion	of	hazards	and	the	possibility	of	resulting	glitches	in	this	section	has	assumed	that	only	a	single	input	can	change	at	a	time	and	that	no	other	input	will	change	until	the	circuit	has	stabilized.	If	more	than	one	input	can	change	at	one	time,	then	nearly	all	circuits	will	contain	hazards,	and	they
cannot	be	eliminated	by	modifying	the	circuit	implementation.	The	circuit	corresponding	to	the	Karnaugh	map	of	Figure	8-11	illustrates	this.	Consider	the	input	change	(A,	B,	C,	D)	=	(0,	1,	0,	1)	to	(0,	1,	1,	0)	with	both	C	and	D	changing.	The	output	is	0	before	the	change	and	will	be	0	after	the	circuit	has	stabilized;	however,	if	the	C	change	propagates
through	the	circuit	before	the	D	change,	then	the	circuit	will	output	a	transient	1.	Effectively,	the	input	combination	to	the	circuit	can	temporarily	become	(A,	B,	C,	D)	=	(0,	1,	1,	1),	and	the	circuit	output	will	temporarily	become	1	no	matter	how	it	is	implemented.	240	Unit	8	Glitches	are	of	most	importance	in	asynchronous	sequential	circuits.	The
latches	and	flip-flops	discussed	in	Unit	11	are	the	most	important	examples	of	asynchronous	sequential	circuits.	Although	more	than	one	input	can	change	at	the	same	time	for	some	of	these	circuits,	restrictions	are	placed	on	the	changes	so	that	it	is	necessary	to	analyze	the	circuits	for	hazards	only	when	a	single	input	changes.	Consequently,	the
discussion	in	this	section	is	relevant	to	this	important	class	of	circuits.	8.5	Simulation	and	Testing	of	Logic	Circuits	An	important	part	of	the	logic	design	process	is	verifying	that	the	final	design	is	correct	and	debugging	the	design	if	necessary.	Logic	circuits	may	be	tested	either	by	actually	building	them	or	by	simulating	them	on	a	computer.
Simulation	is	generally	easier,	faster,	and	more	economical.	As	logic	circuits	become	more	and	more	complex,	it	is	very	important	to	simulate	a	design	before	actually	building	it.	This	is	particularly	true	when	the	design	is	built	in	integrated	circuit	form,	because	fabricating	an	integrated	circuit	may	take	a	long	time	and	correcting	errors	may	be	very
expensive.	Simulation	is	done	for	several	reasons,	including	(1)	verification	that	the	design	is	logically	correct,	(2)	verification	that	the	timing	of	the	logic	signals	is	correct,	and	(3)	simulation	of	faulty	components	in	the	circuit	as	an	aid	to	finding	tests	for	the	circuit.	To	use	a	computer	program	for	simulating	logic	circuits,	you	must	first	specify	the
circuit	components	and	connections;	then,	specify	the	circuit	inputs;	and,	finally,	observe	the	circuit	outputs.	The	circuit	description	may	be	input	into	a	simulator	in	the	form	of	a	list	of	connections	between	the	gates	and	other	logic	elements	in	the	circuit,	or	the	description	may	be	in	the	form	of	a	logic	diagram	drawn	on	a	computer	screen.	Most
modern	logic	simulators	use	the	latter	approach.	A	typical	simulator	which	runs	on	a	personal	computer	uses	switches	or	input	boxes	to	specify	the	inputs	and	probes	to	read	the	logic	outputs.	Alternatively,	the	inputs	and	outputs	may	be	specified	as	sequences	of	0’s	and	1’s	or	in	the	form	of	timing	diagrams.	A	simple	simulator	for	combinational	logic
works	as	follows:	1.	2.	3.	4.	The	circuit	inputs	are	applied	to	the	first	set	of	gates	in	the	circuit,	and	the	outputs	of	those	gates	are	calculated.	The	outputs	of	the	gates	which	changed	in	the	previous	step	are	fed	into	the	next	level	of	gate	inputs.	If	the	input	to	any	gate	has	changed,	then	the	output	of	that	gate	is	calculated.	Step	2	is	repeated	until	no
more	changes	in	gate	inputs	occur.	The	circuit	is	then	in	a	steady-state	condition,	and	the	outputs	may	be	read.	Steps	1	through	3	are	repeated	every	time	a	circuit	input	changes.	The	two	logic	values,	0	and	1,	are	not	sufficient	for	simulating	logic	circuits.	At	times,	the	value	of	a	gate	input	or	output	may	be	unknown,	and	we	will	represent	this
unknown	value	by	X.	At	other	times	we	may	have	no	logic	signal	at	an	input,	as	in	the	case	of	an	open	circuit	when	an	input	is	not	connected	to	any	output.	We	use	Combinational	Circuit	Design	and	Simulation	Using	Gates	241	the	logic	value	Z	to	represent	an	open	circuit,	or	high	impedance	(hi-Z)	connection.	The	discussion	that	follows	assumes	we
are	using	a	four-valued	logic	simulator	with	logic	values	0,	1,	X	(unknown),	and	Z	(hi-Z).	Figure	8-13(a)	shows	a	typical	simulation	screen	on	a	personal	computer.	The	switches	are	set	to	0	or	1	for	each	input.	The	probes	indicate	the	value	of	each	gate	output.	In	Figure	8-13(b),	one	gate	has	no	connection	to	one	of	its	inputs.	Because	that	gate	has	a	1
input	and	a	hi-Z	input,	we	do	not	know	what	the	hardware	will	do,	and	the	gate	output	is	unknown.	This	is	indicated	by	an	X	in	the	probe.	FIGURE	8-13	©	Cengage	Learning	2014	1	0	1	0	1	0	1	0	1	0	1	0	1	0	Probe	1	0	1	1	X	0	1	0	1	0	1	X	Z	1	(b)	Simulation	screen	with	missing	gate	input	(a)	Simulation	screen	showing	switches	Table	8-1	shows	AND	and
OR	functions	for	four-valued	logic	simulation.	These	functions	are	defined	in	a	manner	similar	to	the	way	real	gates	work.	For	an	AND	gate,	if	one	of	the	inputs	is	0,	the	output	is	always	0	regardless	of	the	other	input.	If	one	input	is	1	and	the	other	input	is	X	(we	do	not	know	what	the	other	input	is),	then	the	output	is	X	(we	do	not	know	what	the
output	is).	If	one	input	is	1	and	the	other	input	is	Z	(it	has	no	logic	signal),	then	the	output	is	X	(we	do	not	know	what	the	hardware	will	do).	For	an	OR	gate,	if	one	of	the	inputs	is	1,	the	output	is	1	regardless	of	the	other	input.	If	one	input	is	0	and	the	other	input	is	X	or	Z,	the	output	is	unknown.	For	gates	with	more	than	two	inputs,	the	operations	may
be	applied	several	times.	TABLE	8-1	AND	and	OR	Functions	for	Four-Valued	Simulation	·	0	1	X	Z	+	0	1	X	Z	0	1	X	Z	0	0	0	0	0	1	X	X	0	X	X	X	0	X	X	X	0	1	X	Z	0	1	X	X	1	1	1	1	X	1	X	X	X	1	X	X	©	Cengage	Learning	2014	A	combinational	logic	circuit	with	a	small	number	of	inputs	may	easily	be	tested	with	a	simulator	or	in	lab	by	checking	the	circuit	outputs
for	all	possible	combinations	of	the	input	values.	When	the	number	of	inputs	is	large,	it	is	usually	possible	to	find	a	relatively	small	set	of	input	test	patterns	which	will	test	for	all	possible	faulty	gates	in	the	circuit.1	1	Methods	for	test	pattern	generation	are	described	in	Alexander	Miczo,	Digital	Logic	Testing	and	Simulation,	2nd	ed.	(John	Wiley	&
Sons,	2003).	242	Unit	8	If	a	circuit	output	is	wrong	for	some	set	of	input	values,	this	may	be	due	to	several	possible	causes:	1.	2.	3.	Incorrect	design	Gates	connected	wrong	Wrong	input	signals	to	the	circuit	If	the	circuit	is	built	in	lab,	other	possible	causes	include	4.	5.	Defective	gates	Defective	connecting	wires	Fortunately,	if	the	output	of	a
combinational	logic	circuit	is	wrong,	it	is	very	easy	to	locate	the	problem	systematically	by	starting	at	the	output	and	working	back	through	the	circuit	until	the	trouble	is	located.	For	example,	if	the	output	gate	has	the	wrong	output	and	its	inputs	are	correct,	this	indicates	that	the	gate	is	defective.	On	the	other	hand,	if	one	of	the	inputs	is	wrong,	then
either	the	gate	is	connected	wrong,	the	gate	driving	this	input	has	the	wrong	output,	or	the	input	connection	is	defective.	Example	The	function	F	=	AB(C′D	+	CD′)	+	A′B′(C	+	D)	is	realized	by	the	circuit	of	Figure	8-14:	FIGURE	8-14	Logic	Circuit	with	Incorrect	Output	C′	©	Cengage	Learning	2014	D	C	D′	1	2	0	3	0	C	D	4	1	A	B	A′	1	B′	5	6	1	7	1	F	0	A
student	builds	the	circuit	in	a	lab	and	finds	that	when	A	=	B	=	C	=	D	=	1,	the	output	F	has	the	wrong	value,	and	that	the	gate	outputs	are	as	shown	in	Figure	8-14.	The	reason	for	the	incorrect	value	of	F	can	be	determined	as	follows:	1.	2.	3.	4.	The	output	of	gate	7	(F)	is	wrong,	but	this	wrong	output	is	consistent	with	the	inputs	to	gate	7,	that	is,	1	+	0
=	1.	Therefore,	one	of	the	inputs	to	gate	7	must	be	wrong.	In	order	for	gate	7	to	have	the	correct	output	(F	=	0),	both	inputs	must	be	0.	Therefore,	the	output	of	gate	5	is	wrong.	However,	the	output	of	gate	5	is	consistent	with	its	inputs	because	1	·	1	·	1	=	1.	Therefore,	one	of	the	inputs	to	gate	5	must	be	wrong.	Either	the	output	of	gate	3	is	wrong,	or
the	A	or	B	input	to	gate	5	is	wrong.	Because	C′D	+	CD′	=	0,	the	output	of	gate	3	is	wrong.	The	output	of	gate	3	is	not	consistent	with	the	outputs	of	gates	1	and	2	because	0	+	0	≠	1.	Therefore,	either	one	of	the	inputs	to	gate	3	is	connected	wrong,	gate	3	is	defective,	or	one	of	the	input	connections	to	gate	3	is	defective.	This	example	illustrates	how	to
troubleshoot	a	logic	circuit	by	starting	at	the	output	gate	and	working	back	until	the	wrong	connection	or	defective	gate	is	located.	Combinational	Circuit	Design	and	Simulation	Using	Gates	243	Problems	8.1	Complete	the	timing	diagram	for	the	given	circuit.	Assume	that	both	gates	have	a	propagation	delay	of	5	ns.	W	X	W	V	Y	Z	X	Y	V	Z	0	5	10	15	20
25	30	35	40	t	(ns)	8.2	Consider	the	following	logic	function.	F	(A,	B,	C,	D)	=	Σ	m	(0,	4,	5,	10,	11,	13,	14,	15)	(a)	Find	two	different	minimum	circuits	which	implement	F	using	AND	and	OR	gates.	Identify	two	hazards	in	each	circuit.	(b)	Find	an	AND-OR	circuit	for	F	which	has	no	hazards.	(c)	Find	an	OR-AND	circuit	for	F	which	has	no	hazards.	8.3	For
the	following	circuit:	B	E	G	C	F	A	D	(a)	Assume	that	the	inverters	have	a	delay	of	1	ns	and	the	other	gates	have	a	delay	of	2	ns.	Initially	A	=	0	and	B	=	C	=	D	=	1,	and	C	changes	to	0	at	time	=	2	ns.	Draw	a	timing	diagram	and	identify	the	transient	that	occurs.	(b)	Modify	the	circuit	to	eliminate	the	hazard.	8.4	Using	four-valued	logic,	find	A,	B,	C,	D,	E,
F,	G,	and	H.	1	A	C	E	G	(no	connection)	D	B	F	H	244	Unit	8	8.5	The	circuit	below	was	designed	to	implement	the	logic	equation	F	=	AB′D	+	BC′D′	+	BCD,	but	it	is	not	working	properly.	The	input	wires	to	gates	1,	2,	and	3	are	so	tightly	packed,	it	would	take	you	a	while	to	trace	them	all	back	to	see	whether	the	inputs	are	correct.	It	would	be	nice	to	only
have	to	trace	whichever	one	is	incorrectly	wired.	When	A	=	B	=	0	and	C	=	D	=	1,	the	inputs	and	outputs	of	gate	4	are	as	shown.	Is	gate	4	working	properly?	If	so,	which	of	the	other	gates	either	is	connected	incorrectly	or	is	malfunctioning?	A	1	B	Mess	of	Wires	C	1	1	2	4	1	F	0	3	D	8.6	(a)	Assume	the	inverters	have	a	delay	of	1	ns	and	the	other	gates
have	a	delay	of	2	ns.	Initially	A	=	B	=	C	=	0	and	D	=	1;	C	changes	to	1	at	time	2	ns.	Draw	a	timing	diagram	showing	the	glitch	corresponding	to	the	hazard.	(b)	Modify	the	circuit	so	that	it	is	hazard	free.	(Leave	the	circuit	as	a	two-level,	OR-	AND	circuit.)	A	D	C	B	E	F	H	G	8.7	A	two-level,	NOR-NOR	circuit	implements	the	function	f(a,	b,	c,	d)	=	(a	+	d′)
(b′	+	c	+	d)(a′	+	c′	+	d′)(b′	+	c′	+	d).	(a)	Find	all	hazards	in	the	circuit.	(b)	Redesign	the	circuit	as	a	two-level,	NOR-NOR	circuit	free	of	all	hazards	and	using	a	minimum	number	of	gates.	8.8	F(A,	B,	C,	D)	=	Σ	m(0,	2,	3,	5,	6,	7,	8,	9,	13,	15)	(a)	Find	three	different	minimum	AND-OR	circuits	that	implement	F.	Identify	two	hazards	in	each	circuit.	Then
find	an	AND-OR	circuit	for	F	that	has	no	hazards.	(b)	There	are	two	minimum	OR-AND	circuits	for	F	;	each	has	one	hazard.	Identify	the	hazard	in	each	circuit,	and	then	find	an	OR-AND	circuit	for	F	that	has	no	hazards.	Combinational	Circuit	Design	and	Simulation	Using	Gates	245	8.9	Consider	the	following	three-level	NOR	circuit:	(a)	Find	all	hazards
in	this	circuit.	(b)	Redesign	the	circuit	as	a	three-level	NOR	circuit	that	is	free	of	all	hazards.	A	B	C	f	D	8.10	Draw	the	timing	diagram	for	V	and	Z	for	the	circuit.	Assume	that	the	AND	gate	has	a	delay	of	10	ns	and	the	OR	gate	has	a	delay	of	5	ns.	W	X	V	10	ns	5	ns	Y	Z	W	X	Y	V	Z	0	5	10	15	20	25	30	35	40	45	50	55	t	(ns)	8.11	Consider	the	three-level
circuit	corresponding	to	the	expression	f(A,	B,	C,	D)	=	(A	+	B)(B′C′	+	BD′).	(a)	Find	all	hazards	in	this	circuit.	(b)	Redesign	the	circuit	as	a	three-level	NOR	circuit	that	is	free	of	all	hazards.	8.12	Complete	the	timing	diagram	for	the	given	circuit.	Assume	that	both	gates	have	a	propagation	delay	of	5	ns.	W	W	X	Y	X	V	Z	Y	V	Z	0	5	10	15	20	25	30	35	40	t
(ns)	246	Unit	8	8.13	Implement	the	logic	function	from	Figure	8.10(b)	as	a	minimum	sum	of	products.	Find	the	static	hazards	and	tell	what	minterms	they	are	between.	Implement	the	same	logic	function	as	a	sum	of	products	without	any	hazards.	8.14	Using	four-valued	logic,	find	A,	B,	C,	D,	E,	F,	G,	and	H.	C	(no	connection)	A	D	F	H	0	B	G	(no
connection)	E	8.15	The	following	circuit	was	designed	to	implement	the	logic	equation	F	=	(A	+	B′	+	C′)	(A′	+	B	+	C′)(A′	+	B′	+	C),	but	it	is	not	working	properly.	The	input	wires	to	gates	1,	2,	and	3	are	so	tightly	packed,	it	would	take	you	a	while	to	trace	them	all	back	to	see	whether	the	inputs	are	correct.	It	would	be	nice	to	only	have	to	trace
whichever	one	is	incorrectly	wired.	When	A	=	B	=	C	=	1,	the	inputs	and	outputs	of	gate	4	are	as	shown.	Is	gate	4	working	properly?	If	so,	which	of	the	other	gates	either	is	connected	incorrectly	or	is	malfunctioning?	A	B	1	Mess	of	Wires	C	2	1	0	4	0	F	0	3	8.16	Consider	the	following	logic	function.	F(A,	B,	C,	D)	=	Σ	m(0,	2,	5,	6,	7,	8,	9,	12,	13,	15)	(a)
Find	two	different	minimum	AND-OR	circuits	which	implement	F.	Identify	two	hazards	in	each	circuit.	Then	find	an	AND-OR	circuit	for	F	that	has	no	hazards.	(b)	The	minimum	OR-AND	circuit	for	F	has	one	hazard.	Identify	it,	and	then	find	an	OR-AND	circuit	for	F	that	has	no	hazards.	Design	Problems	Seven-Segment	Indicator	Several	of	the	problems
involve	the	design	of	a	circuit	to	drive	a	seven-segment	indicator	(see	Figure	8-15).	The	seven-segment	indicator	can	be	used	to	display	any	one	of	the	decimal	digits	0	through	9.	For	example,	“1”	is	displayed	by	lighting	segments	Combinational	Circuit	Design	and	Simulation	Using	Gates	247	2	and	3,	“2”	by	lighting	segments	1,	2,	7,	5,	and	4,	and	“8”
by	lighting	all	seven	segments.	A	segment	is	lighted	when	a	logic	1	is	applied	to	the	corresponding	input	on	the	display	module.	FIGURE	8-15	Circuit	Driving	Seven-Segment	Module	©	Cengage	Learning	2014	Seven-Segment	Indicator	A	Inputs	From	B	Toggle	C	Switches	D	Circuit	to	be	Designed	X1	X2	X3	X4	X5	X6	X7	1	1	2	6	3	7	2	4	5	5	6	7	3	4	8.A
Design	an	8-4-2-1	BCD	code	converter	to	drive	a	seven-segment	indicator.	The	four	inputs	to	the	converter	circuit	(A,	B,	C,	and	D	in	Figure	8-15)	represent	an	8-4-2-1	binary-coded-decimal	digit.	Assume	that	only	input	combinations	representing	the	digits	0	through	9	can	occur	as	inputs,	so	that	the	combinations	1010	through	1111	are	don’t-cares.
Design	your	circuit	using	only	two-,	three-,	and	four-input	NAND	gates	and	inverters.	Try	to	minimize	the	number	of	gates	required.	The	variables	A,	B,	C,	and	D	will	be	available	from	toggle	switches.	Use	(not)	for	6.	Use	(not)	for	9.	Any	solution	that	uses	18	or	fewer	gates	and	inverters	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.
8.B	Design	an	excess-3	code	converter	to	drive	a	seven-segment	indicator.	The	four	inputs	to	the	converter	circuit	(A,	B,	C,	and	D	in	Figure	8-15)	represent	an	excess-3	coded	decimal	digit.	Assume	that	only	input	combinations	representing	the	digits	0	through	9	can	occur	as	inputs,	so	that	the	six	unused	combinations	are	don’tcares.	Design	your
circuit	using	only	two-,	three-,	and	four-input	NAND	gates	and	inverters.	Try	to	minimize	the	number	of	gates	and	inverters	required.	The	variables	A,	B,	C,	and	D	will	be	available	from	toggle	switches.	Use	(not)	for	6.	Use	(not)	for	9.	Any	solution	with	16	or	fewer	gates	and	inverters	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	8.C
Design	a	circuit	which	will	yield	the	product	of	two	binary	numbers,	n2	and	m2,	where	002	≤	n2	≤	112	and	0002	≤	m2	≤	1012.	For	example,	if	n2	=	102	and	m2	=	0012,	then	the	product	is	n2	×	m2	=	102	×	0012	=	00102.	Let	the	variables	A	and	B	represent	the	first	and	second	digits	of	n2,	respectively	(i.e.,	in	this	example	A	=	1	and	B	=	0).	Let	the
variables	C,	D,	and	E	represent	the	first,	second,	and	third	digits	of	248	Unit	8	m2,	respectively	(in	this	example	C	=	0,	D	=	0,	and	E	=	1).	Also	let	the	variables	W,	X,	Y,	and	Z	represent	the	first,	second,	third,	and	fourth	digits	of	the	product.	(In	this	example	W	=	0,	X	=	0,	Y	=	1,	and	Z	=	0.)	Assume	that	m2	>	1012	never	occurs	as	a	circuit	input.	n	2
Input	m2	Input	A	B	C	D	E	W	Circuit	to	be	Designed	X	Y	Product	of	n2	×	m2	Z	Design	the	circuit	using	only	two-,	three-,	and	four-input	NOR	gates	and	inverters.	Try	to	minimize	the	total	number	of	gates	and	inverters	required.	The	variables	A,	B,	C,	D,	and	E	will	be	available	from	toggle	switches.	Any	solution	that	uses	15	or	fewer	gates	and	inverters
(not	counting	the	five	inverters	for	the	inputs)	is	acceptable.	8.D	Work	Design	Problem	8.C	using	two-,	three-,	and	four-input	NAND	gates	and	inverters	instead	of	NOR	gates	and	inverters.	Any	solution	that	uses	14	gates	and	inverters	or	less	(not	counting	the	five	inverters	for	the	inputs)	is	acceptable.	8.E	Design	a	circuit	which	multiplies	two	2-bit
binary	numbers	and	displays	the	answer	in	decimal	on	a	seven-segment	indicator.	In	Figure	8-15,	A	and	B	are	two	bits	of	a	binary	number	N1,	and	C	and	D	are	two	bits	of	a	binary	number	N2.	The	product	(N1	×	N2)	is	to	be	displayed	in	decimal	by	lighting	appropriate	segments	of	the	seven-segment	indicator.	For	example,	if	A	=	1,	B	=	0,	C	=	1,	and
D	=	0,	the	number	“4”	is	displayed	by	lighting	segments	2,	3,	6,	and	7.	Use	(not)	for	6.	Use	(not)	for	9.	Design	your	circuit	using	only	two-,	three-,	and	four-input	NAND	gates	and	inverters.	Try	to	minimize	the	number	of	gates	required.	The	variables	A,	B,	C,	and	D	will	be	available	from	toggle	switches.	Any	solution	that	uses	18	or	fewer	gates	and
inverters	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	8.F	Design	a	Gray	code	converter	to	drive	a	seven-segment	indicator.	The	four	inputs	to	the	converter	circuit	(A,	B,	C,	and	D	in	Figure	8-15)	represent	a	decimal	digit	coded	using	the	Gray	code	of	Table	1-2.	Assume	that	only	input	combinations	representing	the	digits	0	through	9
can	occur	as	inputs,	so	that	the	six	unused	combinations	are	don’t-care	terms.	Design	your	circuit	using	only	two-,	three-,	and	four-input	NAND	gates	and	inverters.	Try	to	minimize	the	numbers	of	gates	and	inverters	required.	The	variables	A,	B,	C,	and	D	will	be	available	from	toggle	switches.	Use	(not)	for	6.	Use	(not)	for	9.	Any	solution	with	20	or
fewer	gates	and	inverters	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	Combinational	Circuit	Design	and	Simulation	Using	Gates	249	8.G	Design	a	circuit	that	will	add	either	1	or	2	to	a	4-bit	binary	number	N.	Let	the	inputs	N3,	N2,	N1,	N0	represent	N.	The	input	K	is	a	control	signal.	The	circuit	should	have	outputs	M3,	M2,	M1,	M0,
which	represent	the	4-bit	binary	number	M.	When	K	=	0,	M	=	N	+	1.	When	K	=	1,	M	=	N	+	2.	Assume	that	the	inputs	for	which	M	>	11112	will	never	occur.	Design	the	circuit	using	only	two-,	three-,	and	four-input	NAND	gates	and	inverters.	Try	to	minimize	the	total	number	of	gates	and	inverters	required.	The	input	variables	K,	N3,	N2,	N1,	and	N0
will	be	available	from	toggle	switches.	Any	solution	that	uses	13	or	fewer	gates	and	inverters	(not	counting	the	five	inverters	for	the	inputs)	is	acceptable.	8.H	Work	Problem	8.A,	except	use	4-2-1-8	code	instead	of	8-4-2-1	code.	For	example,	in	4-2-1-8	code,	9	is	represented	by	0011.	Also	change	the	representations	of	digits	6	and	9	to	the	opposite	form
given	in	Problem	8.A.	Any	solution	with	20	or	fewer	gates	and	inverters	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	8.I	Work	Problem	8.B,	except	use	excess-2	code	instead	of	excess-3	code.	(In	excess2	code,	0	is	represented	by	0010,	1	by	0011,	2	by	0100,	etc.).	Any	solution	with	17	or	fewer	gates	and	inverters	(not	counting	the	four
inverters	for	the	inputs)	is	acceptable.	8.J	Design	a	circuit	which	will	multiply	a	3-bit	binary	number	CDE	by	2,	3,	or	5,	depending	on	the	value	of	a	2-bit	code	AB	(00,	01,	or	10),	to	produce	a	4-bit	result	WXYZ.	If	the	result	has	a	value	greater	than	or	equal	to	15,	WXYZ	should	be	1111	to	indicate	an	overflow.	Assume	that	the	code	AB	=	11	will	never
occur.	Design	your	circuit	using	only	two-,	three-,	and	four-input	NOR	gates	and	inverters.	Try	to	minimize	the	number	of	gates	required.	The	inputs	A,	B,	C,	D,	and	E	will	be	available	from	toggle	switches.	Any	solution	which	uses	19	or	fewer	gates	and	inverters	(not	counting	the	five	inverters	for	the	inputs)	is	acceptable.	8.K	Design	a	circuit	which
will	divide	a	5-bit	binary	number	by	3	to	produce	a	4-bit	binary	quotient.	Assume	that	the	input	number	is	in	the	range	0	through	27	and	that	numbers	in	the	range	28	through	31	will	never	occur	as	inputs.	Design	your	circuit	using	only	two-,	three-,	and	four-input	NAND	gates	and	inverters.	Try	to	minimize	the	number	of	gates	required.	The	inputs	A,
B,	C,	D,	and	E	will	be	available	from	toggle	switches.	Any	solution	which	uses	22	or	fewer	gates	and	inverters	(not	counting	the	five	inverters	for	the	inputs)	is	acceptable.	8.L	Design	an	excess-3	code	converter	to	drive	a	seven-segment	indicator.	The	four	inputs	(A,	B,	C,	D)	to	the	converter	circuit	represent	an	excess-3	digit.	Input	combinations
representing	the	numbers	0	through	9	should	be	displayed	as	decimal	digits.	The	input	combinations	0000,	0001,	and	0010	should	be	interpreted	as	an	error,	and	an	“E”	should	be	displayed.	Assume	that	the	input	combinations	1101,	1110,	and	1111	will	never	occur.	Design	your	circuit	using	only	two-,	three-,	and	four-input	NOR	gates	and	inverters.
Any	solution	with	18	or	fewer	gates	and	inverters	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	250	Unit	8	Use	(not)	for	6.	Use	(not)	for	9.	8.M	Design	a	circuit	which	displays	the	letters	A	through	J	on	a	seven-segment	indicator.	The	circuit	has	four	inputs	W,	X,	Y,	Z	which	represent	the	last	4	bits	of	the	ASCII	code	for	the	letter	to	be

displayed.	For	example,	if	WXYZ	=	0001,	“A”	will	be	displayed.	The	letters	should	be	displayed	in	the	following	form:	Design	your	circuit	using	only	two-,	three-,	and	four-input	NOR	gates	and	inverters.	Any	solution	with	22	or	fewer	gates	and	inverters	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	8.N	A	simple	security	system	for	two
doors	consists	of	a	card	reader	and	a	keypad.	Card	Reader	Keypad	A	B	C	D	E	Logic	Circuit	X	To	Door	1	Y	To	Door	2	Z	To	Alarm	A	person	may	open	a	particular	door	if	he	or	she	has	a	card	containing	the	corresponding	code	and	enters	an	authorized	keypad	code	for	that	card.	The	outputs	from	the	card	reader	are	as	follows:	No	card	inserted	Valid
code	for	door	1	Valid	code	for	door	2	Invalid	card	code	A	B	0	0	1	1	0	1	1	0	To	unlock	a	door,	a	person	must	hold	down	the	proper	keys	on	the	keypad	and,	then,	insert	the	card	in	the	reader.	The	authorized	keypad	codes	for	door	1	are	101	and	110,	and	the	authorized	keypad	codes	for	door	2	are	101	and	011.	If	the	card	has	an	invalid	code	or	if	the
wrong	keypad	code	is	entered,	the	alarm	will	ring	when	the	card	is	inserted.	If	the	correct	keypad	code	is	entered,	the	corresponding	door	will	be	unlocked	when	the	card	is	inserted.	Design	the	logic	circuit	for	this	simple	security	system.	Your	circuit’s	inputs	will	consist	of	a	card	code	AB,	and	a	keypad	code	CDE.	The	circuit	will	have	three	outputs
XYZ	(if	X	or	Y	=	1,	door	1	or	2	will	be	opened;	if	Z	=	1,	the	alarm	will	sound).	Design	your	circuit	using	only	two-,	three-,	and	four-input	NOR	gates	and	inverters.	Any	solution	Combinational	Circuit	Design	and	Simulation	Using	Gates	251	with	19	or	fewer	gates	and	inverters	(not	counting	the	five	inverters	for	the	inputs)	is	acceptable.	Use	toggle
switches	for	inputs	A,	B,	C,	D,	and	E	when	you	test	your	circuit.	8.O	Work	Design	Problem	8.A	using	two-,	three-,	and	four-input	NOR	gates	and	inverters	instead	of	NAND	gates	and	inverters.	Any	solution	that	uses	19	gates	and	inverters	or	fewer	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	8.P	Work	Design	Problem	8.F	using	two-,
three-,	and	four-input	NOR	gates	and	inverters	instead	of	NAND	gates	and	inverters.	Any	solution	that	uses	21	gates	and	inverters	or	fewer	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	8.Q	Work	Design	Problem	8.H	using	two-,	three-,	and	four-input	NOR	gates	and	inverters	instead	of	NAND	gates	and	inverters.	Any	solution	that	uses
17	gates	and	inverters	or	fewer	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	8.R	Work	Design	Problem	8.I	using	two-,	three-,	and	four-input	NOR	gates	and	inverters	instead	of	NAND	gates	and	inverters.	Any	solution	that	uses	16	gates	and	inverters	or	fewer	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	8.S	Design	a
“disk	spinning”	animation	circuit	for	a	CD	player.	The	input	to	the	circuit	will	be	a	3-bit	binary	number	A1A2A3	provided	by	another	circuit.	It	will	count	from	0	to	7	in	binary,	and	then	it	will	repeat.	(You	will	learn	to	design	such	counters	in	Unit	12.)	The	animation	will	appear	on	the	top	four	lights	of	the	LED	display	of	Figure	8-15,	i.e.,	on	X1,	X2,	X7,
and	X6,	going	clockwise.	The	animation	should	consist	of	a	blank	spot	on	a	disk	spinning	around	once,	beginning	with	X1.	Then,	the	entire	disk	should	blink	on	and	off	twice.	The	pattern	is	shown.	Design	your	circuit	using	only	two-,	three-,	and	four-input	NOR	gates	and	inverters.	Try	to	minimize	the	number	of	gates	required.	Any	solution	which	uses
11	or	fewer	gates	(not	counting	the	four	inverters	for	the	inputs)	is	acceptable.	UNIT	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	9	Objectives	252	1.	Explain	the	function	of	a	multiplexer.	Implement	a	multiplexer	using	gates.	2.	Explain	the	operation	of	three-state	buffers.	Determine	the	resulting	output	when	three-state	buffer	outputs
are	connected	together.	Use	three-state	buffers	to	multiplex	signals	onto	a	bus.	3.	Explain	the	operation	of	a	decoder	and	encoder.	Use	a	decoder	with	added	gates	to	implement	a	set	of	logic	functions.	Implement	a	decoder	or	priority	encoder	using	gates.	4.	Explain	the	operation	of	a	read-only	memory	(ROM).	Use	a	ROM	to	implement	a	set	of	logic
functions.	5.	Explain	the	operation	of	a	programmable	logic	array	(PLA).	Use	a	PLA	to	implement	a	set	of	logic	functions.	Given	a	PLA	table	or	an	internal	connection	diagram	for	a	PLA,	determine	the	logic	functions	realized.	6.	Explain	the	operation	of	a	programmable	array	logic	device	(PAL).	Determine	the	programming	pattern	required	to	realize	a
set	of	logic	functions	with	a	PAL.	7.	Explain	the	operation	of	a	complex	programmable	logic	device	(CPLD)	and	a	field-programmable	gate	array	(FPGA).	8.	Use	Shannon’s	expansion	theorem	to	decompose	a	switching	function.	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	253	Study	Guide	1.	Read	Section	9.1,	Introduction.	2.	Study
Section	9.2,	Multiplexers.	(a)	Draw	a	logic	circuit	for	a	2-to-1	multiplexer	(MUX)	using	gates.	(b)	Write	the	equation	for	a	4-to-1	MUX	with	control	inputs	A	and	C.	Z	=	___	(c)	By	tracing	signals	on	Figure	9-3,	determine	what	will	happen	to	Z	if	A	=	1,	B	=	0	and	C	changes	from	0	to	1.	(d)	Use	three	2-to-1	MUXes	to
make	a	4-to-1	MUX	with	control	inputs	A	and	B.	Draw	the	circuit.	(Hint:	One	MUX	should	have	I0	and	I1	inputs,	and	another	should	have	I2	and	I3	inputs.)	(e)	Observe	that	if	A	=	0,	A	⊕	B	=	B,	and	that	if	A	=	1,	A	⊕	B	=	B′.	Using	this	observation,	construct	an	exclusive-OR	gate	using	a	2-to-1	multiplexer	and	one	inverter.	(f)	Work	Problems	9.1	and	9.2.
4	(g)	This	section	introduces	bus	notation.	The	bus	symbol	A	represents	a	group	of	four	wires:	A3	______________	A2	______________	A1	______________	A0	______________	254	Unit	9	Draw	the	bus	symbol	for	B2______________	B1______________	B0______________	(h)	Represent	the	circuit	of	Figure	4-3	by	one	4-bit	full	adder	with	two	bus	inputs,	one	bus	output,
and	terminals	for	carry	input	C0	and	output	C4.	Note	that	the	carries	C3,	C2,	and	C1	will	not	appear	on	your	circuit	diagram	because	they	are	signals	internal	to	the	4-bit	adder.	3.	Study	Section	9.3,	Three-State	Buffers.	(a)	Determine	the	output	of	each	three-state	buffer:	0	1	1	1	1	0	0	1	1	(b)	Determine	the	inputs	for	each	three-state	buffer	(use	X	if	an
input	is	a	don’t-care).	Z	1	0	1	(c)	Determine	the	output	for	each	circuit.	Use	X	to	represent	an	unknown	output.	1	1	1	1	1	0	0	1	1	0	1	0	0	0	0	0	C	(d)	The	symbol	A	control	input:	2	2	represents	2	three-state	buffers	with	a	common	B	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	255	C	A1	B1	A0	B0	Using	bus	notation,	draw	an	equivalent
circuit	for:	G	E2	F2	E1	F1	E0	F0	(e)	For	the	following	circuit,	determine	the	4-bit	output	(P)	if	M	=	0.	______________	Repeat	for	M	=	1.	______________	4	4	0101	M	P	4	4	1100	(f)	Specify	the	AND-gate	inputs	so	that	the	given	circuit	is	equivalent	to	the	4-to-1	MUX	in	Figure	9-2.	(Z	in	the	following	figure	represents	an	output	terminal,	not	high
impedance.)	I0	I1	Z	I2	I3	256	Unit	9	(g)	Work	Problem	9.3.	4.	Study	Section	9.4,	Decoders	and	Encoders.	(a)	The	7442	4-to-10	line	decoder	(Figure	9-18)	can	be	used	as	a	3-to-8	line	decoder.	To	do	this,	which	three	lines	should	be	used	as	inputs?	________________________	The	remaining	input	line	should	be	set	equal	to	______________.	(b)	Complete	the
following	table	for	a	4-to-2	priority	encoder:	y0	y1	y2	y3	a	b	c	What	will	a,b,	and	c	be	if	y0	y1	y2	y3	is	0101?	(c)	Work	Problem	9.4,	9.5,	and	9.6.	5.	Study	Section	9.5,	Read-Only	Memories.	(a)	The	following	diagram	shows	the	pattern	of	0’s	and	1’s	stored	in	a	ROM	with	eight	words	and	four	bits	per	word.	What	will	be	the	values	of	F1,	F2,	F3,	and	F4	if
A	=	0	and	B	=	C	=	1?	Give	the	minterm	expansions	for	F1	and	F2:	A	B	C	Decoder	0	1	0	1	1	1	0	0	F1	1	0	0	0	1	1	0	1	F2	1	1	0	1	0	1	0	0	F3	0	0	1	0	1	0	0	1	F4	F1	=	F2	=	(b)	When	asked	to	specify	the	size	of	a	ROM,	give	the	number	of	words	and	the	number	of	bits	per	word.	What	size	ROM	is	required	to	realize	four	functions	of	5	variables?	What	size
ROM	is	required	to	realize	eight	functions	of	10	variables?	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	257	(c)	When	specifying	the	size	of	a	ROM,	assume	that	you	are	specifying	a	standard	size	ROM	with	2n	words.	What	size	ROM	is	required	to	convert	8-4-2-1	BCD	code	to	2-out-of-5	code?	(See	Table	1-2,	page	22.)	What	size	ROM
would	be	required	to	realize	the	decoder	given	in	Figure	9-18?	(d)	Draw	an	internal	connection	diagram	for	a	ROM	which	would	perform	the	same	function	as	the	circuit	of	Figure	7-22.	(Indicate	the	presence	of	switching	elements	by	dots	at	the	intersection	of	the	word	lines	and	output	lines.)	(e)	Explain	the	difference	between	a	mask-programmable
ROM	and	an	EEPROM.	Which	would	you	use	for	a	new	design	which	had	not	yet	been	debugged?	(f)	Work	Problem	9.7.	6.	Study	Section	9.6,	Programmable	Logic	Devices.	(a)	When	you	are	asked	to	specify	the	size	of	a	PLA,	give	the	number	of	inputs,	the	number	of	product	terms,	and	the	number	of	outputs.	What	size	PLA	would	be	required	to
realize	Equations	(7-24)	if	no	simplification	of	the	minterm	expansions	were	performed?	(b)	If	the	realization	of	Equations	(7-24)	shown	in	Figure	7-22	were	converted	to	a	PLA	realization,	what	size	PLA	would	be	required?	(c)	Specify	the	contents	of	the	PLA	of	question	(b)	in	tabular	form.	Your	table	should	have	four	rows.	(You	will	only	need	seven	1’s
on	the	right	side	of	your	table.	If	you	get	eight	1’s,	you	are	probably	doing	more	work	than	is	necessary.)	(d)	Draw	an	internal	connection	diagram	for	the	PLA	of	(b).	(Use	X’s	to	indicate	the	presence	of	switching	elements	in	the	AND	and	OR	arrays.)	258	Unit	9	(e)	Given	the	following	PLA	table,	plot	maps	for	Z1,Z2,	and	Z3.	A	B	C	Z1	Z2	Z3	−	0	1	1	0	0
1	1	1	0	1	0	0	1	0	1	−	0	0	−	−	1	1	0	1	1	0	1	0	0	0	0	0	1	1	1	A	BC	0	1	0	1	0	00	00	00	01	01	01	11	11	11	10	10	10	Z1	Z2	1	Z3	(The	Z1	map	should	have	six	1’s,	Z2	should	have	five,	and	Z3	should	have	four.)	(f)	For	a	truth	table,	any	combination	of	input	values	will	select	exactly	one	row.	Is	this	statement	true	for	a	PLA	table?	For	any	combination	of	input
values,	the	output	values	from	a	PLA	can	be	determined	by	inspection	of	the	PLA	table.	Consider	Table	9-1,	which	represents	a	PLA	with	three	inputs	and	four	outputs.	If	the	inputs	are	ABC	=	110,	which	three	rows	in	the	table	are	selected?	In	a	given	output	column,	what	is	the	output	if	some	of	the	selected	rows	are	1’s	and	some	are	0’s?	(Remember
that	the	output	bits	for	the	selected	rows	are	ORed	together.)	When	ABC	=	110,	what	are	the	values	of	F0F1F2F3	at	the	PLA	output?	When	ABC	=	010,	which	rows	are	selected	and	what	are	the	values	of	F0F1F2F3	at	the	PLA	output?	(g)	Which	interconnection	points	in	Figure	9-32(a)	must	be	set	in	order	to	realize	the	function	shown	in	Figure	9-
32(b)?	(h)	What	size	of	PAL	could	be	used	to	realize	the	8-to-1	MUX	of	Figure	9-3?	The	quad	MUX	of	Figure	9-7?	Give	the	number	of	inputs,	the	number	of	OR	gates,	and	the	maximum	number	of	inputs	to	an	OR	gate.	(i)	Work	Problems	9.8,	9.9,	and	9.10.	7.	Study	Section	9.7,	Complex	Programmable	Logic	Devices.	Work	Problem	9.11.	8.	Study	Section
9.8,	Field-Programmable	Gate	Arrays.	(a)	For	the	CLB	of	Figure	9-37,	write	a	logic	equation	for	H	in	terms	of	F,	G,	and	H1.	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	259	(b)	How	many	4-variable	function	generators	are	required	to	implement	a	four-input	OR	gate?	A	4-variable	function	with	13	minterms?	(c)	Expand	the	function	of
Equation	(9-9)	about	the	variable	c	instead	of	a.	Expand	it	algebraically	and,	then,	expand	it	by	using	the	Karnaugh	map	of	Figure	9-39.	(Hint:	How	should	you	split	the	map	into	two	halves?)	(d)	Draw	a	diagram	showing	how	to	implement	Equation	(9-12)	using	four	function	generators	and	a	4-to-1	MUX.	(e)	In	the	worst	case,	how	many	4-variable
function	generators	are	required	to	realize	a	7-variable	function	(assume	the	necessary	MUXes	are	available).	(f)	Show	how	to	realize	K	=	abcdefg	using	only	two	4-variable	function	generators.	(Hint:	Use	the	output	of	one	function	generator	as	an	input	to	the	other.)	(g)	Work	Problems	9.12	and	9.13.	9.	When	you	are	satisfied	that	you	can	meet	all	of
the	objectives,	take	the	readiness	test.	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	9.1	Introduction	Until	this	point	we	have	mainly	been	concerned	with	basic	principles	of	logic	design.	We	have	illustrated	these	principles	using	gates	as	our	basic	building	blocks.	In	this	unit	we	introduce	the	use	of	more	complex	integrated	circuits	(ICs)
in	logic	design.	Integrated	circuits	may	be	classified	as	small-scale	integration	(SSI),	medium-scale	integration	(MSI),	large-scale	integration	(LSI),	or	very-large-scale	integration	(VLSI),	depending	on	the	number	of	gates	in	each	integrated	circuit	package	and	the	type	of	function	performed.	SSI	functions	include	NAND,	NOR,	AND,	and	OR	gates,
inverters,	and	flip-flops.	SSI	integrated	circuit	packages	typically	contain	one	to	four	gates,	six	inverters,	or	one	or	two	flip-flops.	MSI	integrated	circuits,	such	as	adders,	multiplexers,	decoders,	registers,	and	counters,	perform	more	complex	functions.	Such	integrated	circuits	typically	contain	the	equivalent	of	12	to	100	gates	in	one	package.	More
complex	functions	such	as	memories	and	microprocessors	are	classified	as	LSI	or	VLSI	integrated	circuits.	An	LSI	integrated	circuit	generally	contains	100	to	a	few	thousand	gates	in	a	single	package,	and	a	VLSI	integrated	circuit	contains	several	thousand	gates	or	more.	It	is	generally	uneconomical	to	design	digital	systems	using	only	SSI	and	MSI
integrated	circuits.	By	using	LSI	and	VLSI	functions,	the	required	number	of	integrated	circuit	packages	is	greatly	reduced.	The	cost	of	mounting	and	wiring	the	integrated	circuits	as	well	as	the	cost	of	designing	and	maintaining	the	digital	system	may	be	significantly	lower	when	LSI	and	VLSI	functions	are	used.	This	unit	introduces	the	use	of
multiplexers,	decoders,	encoders,	and	three-state	buffers	in	logic	design.	Then	read-only	memories	(ROMs)	are	described	and	used	to	implement	multiple-output	combinational	logic	circuits.	Finally,	other	types	of	programmable	logic	devices	(PLDs),	including	programmable	logic	arrays	(PLAs),	programmable	array	logic	devices	(PALs),	complex
programmable	logic	devices	(CPLDs),	and	field-	programmable	gate	arrays	(FPGAs)	are	introduced	and	used	in	combinational	logic	design.	260	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	261	9.2	Multiplexers	A	multiplexer	(or	data	selector,	abbreviated	as	MUX)	has	a	group	of	data	inputs	and	a	group	of	control	inputs.	The	control
inputs	are	used	to	select	one	of	the	data	inputs	and	connect	it	to	the	output	terminal.	Figure	9-1	shows	a	2-to-1	multiplexer	and	its	switch	analog.	When	the	control	input	A	is	0,	the	switch	is	in	the	upper	position	and	the	MUX	output	is	Z	=	I0;	when	A	is	1,	the	switch	is	in	the	lower	position	and	the	MUX	output	is	Z	=	I1.	In	other	words,	a	MUX	acts	like
a	switch	that	selects	one	of	the	data	inputs	(I0	or	I1)	and	transmits	it	to	the	output.	The	logic	equation	for	the	2-to-1	MUX	is	therefore:	Z	=	A′I0	+	AI1	FIGURE	9-1	2-to-1	Multiplexer	and	Switch	Analog	©	Cengage	Learning	2014	I0	I1	2-to-1	MUX	I0	Z	Z	I1	A	A	Figure	9-2	shows	diagrams	for	a	4-to-1	multiplexer,	8-to-1	multiplexer,	and	2n-to-1
multiplexer.	The	4-to-1	MUX	acts	like	a	four-position	switch	that	transmits	one	of	the	four	inputs	to	the	output.	Two	control	inputs	(A	and	B)	are	needed	to	select	one	of	the	four	inputs.	If	the	control	inputs	are	AB	=	00,	the	output	is	I0;	similarly,	the	control	inputs	01,	10,	and	11	give	outputs	of	I1,	I2,	and	I3,	respectively.	The	4-to-1	multiplexer	is
described	by	the	equation	FIGURE	9-2	Multiplexers	©	Cengage	Learning	2014	I0	Data	I1	inputs	I	2	4-to-1	MUX	I3	A	B	Control	inputs	Z	I0	I1	I2	I3	I4	I5	I6	I7	2n	data	lines	8-to-1	MUX	..	.	Z	=	A′B′I0	+	A′BI1	+	AB′I2	+	ABI3	(9-1)	2n-to-1	MUX	Z	Z	...	n	control	inputs	A	B	C	Similarly,	the	8-to-1	MUX	selects	one	of	eight	data	inputs	using	three	control
inputs.	It	is	described	by	the	equation	Z	=	A′B′C′I0	+	A′B′CI1	+	A′BC′I2	+	A′BCI3	+	AB′C′I4	+	AB′CI5	+	ABC′I6	+	ABCI7	(9-2)	262	Unit	9	When	the	control	inputs	are	ABC	=	011,	the	output	is	I3,	and	the	other	outputs	are	selected	in	a	similar	manner.	Figure	9-3	shows	an	internal	logic	diagram	for	the	8-to-1	MUX.	In	general,	a	multiplexer	with	n
control	inputs	can	be	used	to	select	any	one	of	2n	data	inputs.	The	general	equation	for	the	output	of	a	MUX	with	n	control	inputs	and	2n	data	inputs	is	2n	−1	Z	=	a	mkIk	k=0	where	mk	is	a	minterm	of	the	n	control	variables	and	Ik	is	the	corresponding	data	input.	FIGURE	9-3	Logic	Diagram	for	8-to-1	MUX	a′	b′	c′	I	0	a′	b′	c	I	1	a′	b	c′	I	2	a′	b	c	I	3	a	b′	c′
I	4	a	b′	c	I	5	a	b	c′	I	6	a	b	c	I7	©	Cengage	Learning	2014	Z	Of	course,	there	are	several	other	implementations	of	the	8-to-1	MUX.	Each	of	the	gates	in	Figure	9-3	can	be	replaced	by	NAND	gates	to	obtain	a	NAND	gate	implementation.	If	a	NOR	gate	implementation	is	wanted,	the	equation	for	Z	can	be	written	as	a	product	of	sums:	Z	=	(A	+	B	+	C	+	I0)
(A	+	B	+	C′	+	I1)(A	+	B′	+	C	+	I2)	(A	+	B′	+	C′	+	I3)(A′	+	B	+	C	+	I4)(A′	+	B	+	C′	+	I5)	(A′	+	B′	+	C	+	I6)(A′	+	B′	+	C′	+	I7)	(9-3)	Implementations	with	more	than	two	levels	of	gates	can	be	obtained	by	factoring	the	equation	for	Z.	For	example,	if	a	multiple-level	NAND-gate	implementation	is	desired,	Equation	(9-2)	can	be	factored.	One	factorization	is
Z	=	A′B′(C′I0	+	CI1)	+	A′B(C′I2	+	CI3)	+	AB′(C′I4	+	CI5)	+	AB(C′I6	+	CI7)	(9-4)	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	263	The	corresponding	NAND-gate	circuit	is	shown	in	Figure	9-4.	Note	that	the	data	inputs	are	connected	to	four	2-to-1	MUXs	with	C	as	the	select	line,	and	the	outputs	of	these	2-to-1	MUXs	are	connected	to	a	4-
to-1	MUX	with	A	and	B	as	the	select	lines.	Figure	9-5	shows	this	in	block	diagram	form.	FIGURE	9-4	A	Multi-Level	Implementation	of	an	8-to-1	MUX	I0	I1	©	Cengage	Learning	2014	I2	A′	B′	I3	A′	B	I4	A	B′	I5	A	B	I6	I7	C′	C	FIGURE	9-5	Component	MUXs	of	Figure	9-4	I0	I1	0	2-to-1	1S	©	Cengage	Learning	2014	I2	I3	I4	I5	I6	I7	C	0	2-to-1	1S	0	2-to-1	1S	0
2-to-1	1S	0	1	4-to-1	2	S	S0	3	1	A	B	Z	Z	264	Unit	9	Multiplexers	are	frequently	used	in	digital	system	design	to	select	the	data	which	is	to	be	processed	or	stored.	Figure	9-6	shows	how	a	quadruple	2-to-1	MUX	is	used	to	select	one	of	two	4-bit	data	words.	If	the	control	is	A	=	0,	the	values	of	x0,	x1,	x2,	and	x3	will	appear	at	the	z0,	z1,	z2,	and	z3	outputs;
if	A	=	1,	the	values	of	y0,	y1,	y2,	and	y3	will	appear	at	the	outputs.	FIGURE	9-6	Quad	Multiplexer	Used	to	Select	Data	z0	z1	©	Cengage	Learning	2014	2-to-1	z2	z3	A	(MUX	control)	x0	2-to-1	y0	x1	y1	2-to-1	x2	y2	2-to-1	x3	y3	Several	logic	signals	that	perform	a	common	function	may	be	grouped	together	to	form	a	bus.	For	example,	the	sum	outputs	of	a
4-bit	binary	adder	can	be	grouped	together	to	form	a	4-bit	bus.	Instead	of	drawing	the	individual	wires	that	make	up	a	bus,	we	often	represent	a	bus	by	a	single	heavy	line.	The	quad	MUX	of	Figure	9-6	is	redrawn	in	Figure	9-7,	using	bus	inputs	X	and	Y,	and	bus	output	Z.	The	X	bus	represents	the	four	signals	x0,	x1,	x2,	and	x3,	and	similarly	for	the	Y
and	Z	buses.	When	A	=	0,	the	signals	on	bus	X	appear	on	bus	Z;	otherwise,	the	signals	on	bus	Y	appear.	A	diagonal	slash	through	a	bus	with	a	number	beside	it	specifies	the	number	of	bits	in	the	bus.	Z	FIGURE	9-7	Quad	Multiplexer	with	Bus	Inputs	and	Output	©	Cengage	Learning	2014	4	2-to-1	4	A	4	X	Y	The	preceding	multiplexers	do	not	invert	the
data	inputs	as	they	are	routed	to	the	output.	Some	multiplexers	do	invert	the	inputs,	e.g.,	if	the	OR	gate	in	Figure	9-3	is	replaced	by	a	NOR	gate,	then	the	8-to-1	MUX	inverts	the	selected	input.	To	distinguish	between	these	two	types	of	multiplexers,	we	will	say	that	the	multiplexers	without	the	inversion	have	active	high	outputs,	and	the	multiplexers
with	the	inversion	have	active	low	outputs.	Another	type	of	multiplexer	has	an	additional	input	called	an	enable.	The	8-to-1	MUX	in	Figure	9-3	can	be	modified	to	include	an	enable	by	changing	the	AND	gates	to	five-input	gates.	The	enable	signal	E	is	connected	to	the	fifth	input	of	each	of	the	AND	gates.	Then,	if	E	=	0,	Z	=	0	independent	of	the	gate
inputs	Ii	and	the	select	inputs	a,	b,	and	c.	However,	if	E	=	1,	then	the	MUX	functions	as	an	ordinary	8-to-1	multiplexer.	The	terminology	used	for	the	MUX	output,	i.e.,	active	high	and	active	low,	can	be	used	for	the	enable	as	well.	As	described	above,	the	enable	is	active	high;	E	must	be	1	for	the	MUX	to	function	as	a	multiplexer.	If	an	inverter	is
Multiplexers,	Decoders,	and	Programmable	Logic	Devices	265	inserted	between	E	and	the	AND	gates,	E	must	be	0	for	the	MUX	to	function	as	a	multiplexer;	the	enable	is	active	low.	Four	combinations	of	multiplexers	with	an	enable	are	possible.	The	output	can	be	active	high	or	active	low,	whereas	the	enable	can	be	active	high	or	active	low.	In	a
block	diagram	for	the	MUX,	an	active	low	line	is	indicated	by	inserting	a	bubble	on	the	line	to	indicate	the	inclusion	of	an	inversion.	Figure	9-8	shows	these	combinations	for	a	4-to-1	MUX.	FIGURE	9-8	Active-High,	Active-Low	Enable	and	Output	Combinations	E	I0	I1	I2	I3	E	E	0	1	4-to-1	2	S	S	0	3	1	I0	I	Z	1	I2	I3	0	1	4-to-1	2	S	S	0	3	1	I0	I	Z	1	I2	I3	E	0	1
4-to-1	2	S	S	0	3	1	I0	I	Z	1	I2	I3	0	1	4-to-1	2	S	S	0	3	1	Z	©	Cengage	Learning	2014	(a)	(b)	(c)	(d)	In	addition	to	acting	as	a	data	selector,	a	MUX	can	implement	more	general	logic	functions.	In	Figure	9-9	a	4-to-1	MUX	is	used	to	implement	the	function	Z	=	C′D′(A′	+	B′)	+	C′D(A′)	+	CD′(AB′	+	A′B)	+	CD′(0)	=	A′C′	+	A′BD′	+	AB′D′	Given	a	switching
function,	a	MUX	implementation	can	be	obtained	using	Shannon’s	expansion	of	the	function.	(See	the	Subsection	Decomposition	of	Switching	Functions	in	Section	9.8.)	In	general,	the	complexity	of	the	implementation	will	depend	upon	which	function	inputs	are	used	as	the	MUX	select	inputs,	so	it	is	necessary	to	try	different	combinations	to	obtain
the	simplest	solution.	FIGURE	9-9	Four-Variable	Function	Implemented	with	a	4-to-1	MUX	©	Cengage	Learning	2014	A	B	A	B	A′	0	0	1	4-to-1	2	3	S1	S0	Z	C	D	9.3	Three-State	Buffers	A	gate	output	can	only	be	connected	to	a	limited	number	of	other	device	inputs	without	degrading	the	performance	of	a	digital	system.	A	simple	buffer	may	be	used	to
increase	the	driving	capability	of	a	gate	output.	Figure	9-10	shows	a	buffer	connected	between	a	gate	output	and	several	gate	inputs.	Because	no	bubble	is	present	266	Unit	9	FIGURE	9-10	Gate	Circuit	with	Added	Buffer	A	B	C	F	...	©	Cengage	Learning	2014	at	the	buffer	output,	this	is	a	noninverting	buffer,	and	the	logic	values	of	the	buffer	input	and
output	are	the	same,	that	is,	F	=	C.	Normally,	a	logic	circuit	will	not	operate	correctly	if	the	outputs	of	two	or	more	gates	or	other	logic	devices	are	directly	connected	to	each	other.	For	example,	if	one	gate	has	a	0	output	(a	low	voltage)	and	another	has	a	1	output	(a	high	voltage),	when	the	gate	outputs	are	connected	together	the	resulting	output
voltage	may	be	some	intermediate	value	that	does	not	clearly	represent	either	a	0	or	a	1.	In	some	cases,	damage	to	the	gates	may	result	if	the	outputs	are	connected	together.	Use	of	three-state	logic	permits	the	outputs	of	two	or	more	gates	or	other	logic	devices	to	be	connected	together.	Figure	9-11	shows	a	three-state	buffer	and	its	logical
equivalent.	When	the	enable	input	B	is	1,	the	output	C	equals	A;	when	B	is	0,	the	output	C	acts	like	an	open	circuit.	In	other	words,	when	B	is	0,	the	output	C	is	effectively	disconnected	from	the	buffer	output	so	that	no	current	can	flow.	This	is	often	referred	to	as	a	Hi-Z	(high-impedance)	state	of	the	output	because	the	circuit	offers	a	very	high
resistance	or	impedance	to	the	flow	of	current.	Three-state	buffers	are	also	called	tri-state	buffers.	B	FIGURE	9-11	Three-State	Buffer	©	Cengage	Learning	2014	A	B	C	A	C	Figure	9-12	shows	the	truth	tables	for	four	types	of	three-state	buffers.	In	Figures	9-12(a)	and	(b),	the	enable	input	B	is	not	inverted,	so	the	buffer	output	is	enabled	when	B	=	1
and	disabled	when	B	=	0.	That	is,	the	buffer	operates	normally	when	B	=	1,	and	the	buffer	output	is	effectively	an	open	circuit	when	B	=	0.	We	use	the	symbol	Z	to	represent	this	high-impedance	state.	In	Figure	9-12(b),	the	buffer	output	is	inverted	so	that	C	=	A′	when	the	buffer	is	enabled.	The	buffers	in	9-12(c)	and	(d)	operate	the	same	as	in	(a)	and
(b)	except	that	the	enable	input	is	inverted,	so	the	buffer	is	enabled	when	B	=	0.	In	Figure	9-13,	the	outputs	of	two	three-state	buffers	are	tied	together.	When	B	=	0,	the	top	buffer	is	enabled,	so	that	D	=	A;	when	B	=	1,	the	lower	buffer	is	enabled,	so	that	D	=	C.	Therefore,	D	=	B′A	+	BC.	This	is	logically	equivalent	to	using	a	2-to-1	multiplexer	to	select
the	A	input	when	B	=	0	and	the	C	input	when	B	=	1.	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	FIGURE	9-12	Four	Kinds	of	Three-State	Buffers	B	B	A	C	B	A	C	A	267	B	C	A	C	©	Cengage	Learning	2014	B	A	C	B	A	C	B	A	C	B	A	C	0	0	1	1	0	1	0	1	Z	Z	0	1	0	0	1	1	0	1	0	1	Z	Z	1	0	0	0	1	1	0	1	0	1	0	1	Z	Z	0	0	1	1	0	1	0	1	1	0	Z	Z	(a)	(b)	(c)	(d)	When
we	connect	two	three-state	buffer	outputs	together,	as	shown	in	Figure	9-14,	if	one	of	the	buffers	is	disabled	(output	=	Z),	the	combined	output	F	is	the	same	as	the	other	buffer	output.	If	both	buffers	are	disabled,	the	output	is	Z.	If	both	buffers	are	enabled,	a	conflict	can	occur.	If	A	=	0	and	C	=	1,	we	do	not	know	what	the	hardware	will	do,	so	the	F
output	is	unknown	(X).	If	one	of	the	buffer	inputs	is	unknown,	the	F	output	will	also	be	unknown.	The	table	in	Figure	9-14	summarizes	the	operation	of	the	circuit.	S1	and	S2	represent	the	outputs	the	two	buffers	would	have	if	they	were	not	connected	together.	When	a	bus	is	driven	by	three-state	buffers,	we	call	it	a	three-state	bus.	The	signals	on	this
bus	can	have	values	of	0,	1,	Z,	and	perhaps	X.	A	multiplexer	may	be	used	to	select	one	of	several	sources	to	drive	a	device	input.	For	example,	if	an	adder	input	must	come	from	four	different	sources,	a	4-to-1	MUX	may	be	used	to	select	one	of	the	four	sources.	An	alternative	is	to	set	up	a	three-state	bus,	using	three-state	buffers	to	select	one	of	the
sources	(see	Figure	9-15).	In	this	FIGURE	9-13	Data	Selection	Using	Three-State	Buffers	©	Cengage	Learning	2014	A	A	B	0	2-to-1	MUX	D	C	C	D	1	B	FIGURE	9-14	Circuit	with	Two	Three-State	Buffers	B	S1	A	©	Cengage	Learning	2014	S2	D	C	F	S2	S1	X	0	1	Z	X	0	1	Z	X	X	X	X	X	0	X	0	X	X	1	1	X	0	1	Z	268	Unit	9	FIGURE	9-15	4-Bit	Adder	with	Four
Sources	for	One	Operand	©	Cengage	Learning	2014	4	E	EnA	EnB	4	EnC	4	A	EnD	4	B	4	4-bit	adder	4	Cout	4	C	Sum	D	circuit,	each	buffer	symbol	actually	represents	four	three-state	buffers	that	have	a	common	enable	signal.	Integrated	circuits	are	often	designed	using	bi-directional	pins	for	input	and	output.	Bi-directional	means	that	the	same	pin	can
be	used	as	an	input	pin	and	as	an	output	pin,	but	not	both	at	the	same	time.	To	accomplish	this,	the	circuit	output	is	connected	to	the	pin	through	a	three-state	buffer,	as	shown	in	Figure	9-16.	When	the	buffer	is	enabled,	the	pin	is	driven	with	the	output	signal.	When	the	buffer	is	disabled,	an	external	source	can	drive	the	input	pin.	FIGURE	9-16
Integrated	Circuit	with	Bi-Directional	Input-Output	Pin	©	Cengage	Learning	2014	EN	Output	Integrated	Logic	Circuit	Input	Bi-Directional	Input-Output	Pin	9.4	Decoders	and	Encoders	The	decoder	is	another	commonly	used	type	of	integrated	circuit.	Figure	9-17	shows	the	diagram	and	truth	table	for	a	3-to-8	line	decoder.	This	decoder	generates	all	of
the	minterms	of	the	three	input	variables.	Exactly	one	of	the	output	lines	will	be	1	for	each	combination	of	the	values	of	the	input	variables.	FIGURE	9-17	A	3-to-8	Line	Decoder	©	Cengage	Learning	2014	y	0	=	a′b′c′	y	1	=	a′b′c	a	b	c	y	2	=	a′bc′	3-to-8	line	decoder	y	3	=	a′bc	y	4	=	ab′c′	y	5	=	ab′c	y	6	=	abc′	y	7	=	abc	a	b	c	y0	y1	y2	y3	y4	y5	y6	y7	0	0	0	0	1
1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	269	Figure	9-18	illustrates	a	4-to-10	decoder.	This	decoder	has	inverted	outputs	(indicated	by	the	small	circles).	For	each	combination	of
the	values	of	the	inputs,	exactly	one	of	the	output	lines	will	be	0.	When	a	binary-coded-decimal	digit	is	used	as	an	input	to	this	decoder,	one	of	the	output	lines	will	go	low	to	indicate	which	of	the	10	decimal	digits	is	present.	FIGURE	9-18	A	4-to-10	Line	Decoder	Inputs	A	B	C	D	©	Cengage	Learning	2014	9	8	7	6	5	4	3	2	1	0	Outputs	(a)	Logic	diagram
BCD	Input	A	B	C	D	7442	m′9	m′8	m′7	m′6	m′5	m′4	m′3	m′2	m′1	m′0	(b)	Block	diagram	Decimal	Output	A	B	C	D	0	1	2	3	4	5	6	7	8	9	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	(c)	Truth	Table	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	270	Unit	9	In	general,	an	n-to-2n	line	decoder	generates	all	2n	minterms	(or	maxterms)	of	the	n	input	variables.	The	outputs	are	defined	by
the	equations	yi	=	mi	=	M′,i	i	=	0	to	2n	−	1	(noninverted	outputs)	(9-5)	yi	=	m′i	=	Mi,	i	=	0	to	2n	−	1	(inverted	outputs)	(9-6)	or	where	mi	is	a	minterm	of	the	n	input	variables	and	Mi	is	a	maxterm.	Because	an	n-input	decoder	generates	all	of	the	minterms	of	n	variables,	n-variable	functions	can	be	realized	by	ORing	together	selected	minterm	outputs
from	a	decoder.	If	the	decoder	outputs	are	inverted,	then	NAND	gates	can	be	used	to	generate	the	functions,	as	illustrated	in	the	following	example.	Realize	f1(a,	b,	c,	d)	=	m1	+	m2	+	m4	and	f2(a,	b,	c,	d)	=	m4	+	m7	+	m9	using	the	decoder	of	Figure	9-18.	Since	a	NAND	gate	ORs	inverted	signals,	f1	and	f2	can	be	generated	using	NAND	gates,	as
shown	in	Figure	9-19.	An	encoder	performs	the	inverse	function	of	a	decoder.	Figure	9-20	shows	an	8-to-3	priority	encoder	with	inputs	y0	through	y7.	If	input	yi	is	1	and	the	other	inputs	are	0,	then	the	abc	outputs	represent	a	binary	number	equal	to	i.	For	example,	if	FIGURE	9-19	Realization	of	a	Multiple-Output	Circuit	Using	a	Decoder	a	©	Cengage
Learning	2014	b	0	m1′	1	m′2	2	c	3	4-to-10	Line	Decoder	d	m′4	4	5	6	m7′	7	8	©	Cengage	Learning	2014	y0	y1	y2	y3	y4	y5	y6	y7	a	8-to-3	Priority	Encoder	f2	m9′	9	FIGURE	9-20	An	8-to-3	Priority	Encoder	f1	b	c	d	y0	y1	y2	y3	y4	y5	y6	y7	a	b	c	d	0	1	X	X	X	X	X	X	X	0	0	0	0	0	1	1	1	1	0	1	1	1	1	1	1	1	1	0	0	1	X	X	X	X	X	X	0	0	0	1	X	X	X	X	X	0	0	0	0	1	X	X	X	X	0	0	0	0
0	1	X	X	X	0	0	0	0	0	0	1	X	X	0	0	0	0	0	0	0	1	X	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	1	1	0	0	1	0	1	0	1	0	1	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	271	y3	=	1,	then	abc	=	011.	If	more	than	one	input	can	be	1	at	the	same	time,	the	output	can	be	defined	using	a	priority	scheme.	The	truth	table	in	Figure	9-20	uses	the	following	scheme:	If	more
than	one	input	is	1,	the	highest	numbered	input	determines	the	output.	For	example,	if	inputs	y1,	y4,	and	y5	are	1,	the	output	is	abc	=	101.	The	X’s	in	the	table	are	don’t-cares;	for	example,	if	y5	is	1,	we	do	not	care	what	inputs	y0	through	y4	are.	Output	d	is	1	if	any	input	is	1,	otherwise,	d	is	0.	This	signal	is	needed	to	distinguish	the	case	of	all	0	inputs
from	the	case	where	only	y0	is	1.	9.5	Read-Only	Memories	A	read-only	memory	(ROM)	consists	of	an	array	of	semiconductor	devices	that	are	interconnected	to	store	an	array	of	binary	data.	Once	binary	data	is	stored	in	the	ROM,	it	can	be	read	out	whenever	desired,	but	the	data	that	is	stored	cannot	be	changed	under	normal	operating	conditions.
Figure	9-21(a)	shows	a	ROM	which	has	three	input	lines	and	four	output	lines.	Figure	9-21(b)	shows	a	typical	truth	table	which	relates	the	ROM	inputs	and	outputs.	For	each	combination	of	input	values	on	the	three	input	lines,	the	corresponding	pattern	of	0’s	and	1’s	appears	on	the	ROM	output	lines.	For	example,	if	the	combination	ABC	=	010	is
applied	to	the	input	lines,	the	pattern	F0F1F2F3	=	0111	appears	on	the	output	lines.	Each	of	the	output	patterns	that	is	stored	in	the	ROM	is	called	a	word.	Because	the	ROM	has	three	input	lines,	we	have	23	=	eight	different	combinations	of	input	values.	Each	input	combination	serves	as	an	address	which	can	select	one	of	the	eight	words	stored	in
the	memory.	Because	there	are	four	output	lines,	each	word	is	four	bits	long,	and	the	size	of	this	ROM	is	8	words	×	4	bits.	A	ROM	which	has	n	input	lines	and	m	output	lines	(Figure	9-22)	contains	an	array	of	2n	words,	and	each	word	is	m	bits	long.	The	input	lines	serve	as	an	address	to	select	one	of	the	2n	words.	When	an	input	combination	is	applied
to	the	ROM,	the	pattern	of	0’s	and	1’s	which	is	stored	in	the	corresponding	word	in	the	memory	appears	at	the	output	lines.	For	the	example	in	Figure	9-22,	if	00	.	.	.	11	is	applied	to	the	input	(address	lines)	of	the	ROM,	the	word	110	.	.	.	010	will	be	selected	and	transferred	to	the	output	lines.	A	2n	×	m	ROM	can	realize	m	functions	of	n	variables
because	it	can	store	a	truth	table	with	2n	rows	and	m	columns.	Typical	sizes	for	commercially	available	ROMs	range	from	32	words	×	4	bits	to	512K	words	×	8	bits,	or	larger.	FIGURE	9-21	An	8-Word	×	4-Bit	ROM	©	Cengage	Learning	2014	Unit	9	ROM	Words	×	m	Bits	2n	...	©	Cengage	Learning	2014	m	Output	Lines	n	Input	Variables	00	·	·	·	00	00	·	·	·
01	00	·	·	·	10	00	·	·	·	11	m	Output	Variables	100	·	·	·	110	010	·	·	·	111	101	·	·	·	101	110	·	·	·	010	11	11	11	11	001	110	011	111	···	···	···	···	00	01	10	11	···	n	Input	Lines	···	FIGURE	9-22	Read-Only	Memory	with	n	Inputs	and	m	Outputs	...	272	···	···	···	···	011	110	000	101	Typical	Data	Array	Stored	in	ROM	(2n	words	of	m	bits	each)	A	ROM	basically	consists	of	a
decoder	and	a	memory	array,	as	shown	in	Figure	9-23.	When	a	pattern	of	n	0’s	and	1’s	is	applied	to	the	decoder	inputs,	exactly	one	of	the	2n	decoder	outputs	is	1.	This	decoder	output	line	selects	one	of	the	words	in	the	memory	array,	and	the	bit	pattern	stored	in	this	word	is	transferred	to	the	memory	output	lines.	Figure	9-24	illustrates	one	possible
internal	structure	of	the	8-word	×	4-bit	ROM	shown	in	Figure	9-21.	The	decoder	generates	the	eight	minterms	of	the	three	input	variables.	The	memory	array	forms	the	four	output	functions	by	ORing	together	selected	minterms.	A	switching	element	is	placed	at	the	intersection	of	a	word	line	and	an	output	line	if	the	corresponding	minterm	is	to	be
included	in	the	output	function;	otherwise,	the	switching	element	is	omitted	(or	not	connected).	If	a	switching	element	connects	an	output	line	to	a	word	line	which	is	1,	the	output	line	will	be	1.	Otherwise,	the	pull-down	resistors	at	the	top	of	Figure	9-24	cause	the	output	line	to	be	0.	So	the	switching	elements	which	are	connected	in	this	way	in	the
memory	array	effectively	form	an	OR	gate	for	each	of	the	output	functions.	For	example,	m0,	m1,	m4,	and	m6	are	ORed	together	to	form	F0.	Figure	9-25	shows	the	equivalent	OR	gate.	In	general,	those	minterms	which	are	connected	to	output	line	F	by	switching	elements	are	ORed	together	to	form	the	output	Fi.	Thus,	the	ROM	in	Figure	9-24
generates	the	following	functions:	F0	=	F1	=	F2	=	F3	=	FIGURE	9-23	Basic	ROM	Structure	n	Input	Lines	Decoder	..	.	ROM	..	.	©	Cengage	Learning	2014	Σ	m(0,	1,	4,	6)	=	A′B′	+	AC′	Σ	m(2,	3,	4,	6,	7)	=	B	+	AC′	Σ	m(0,	1,	2,	6)	=	A′B′	+	BC′	Σ	m(2,	3,	5,	6,	7)	=	AC	+	B	Memory	Array	2n	Words	×	m	Bits	...	m	Output	Lines	(9-7)	Multiplexers,	Decoders,	and
Programmable	Logic	Devices	FIGURE	9-24	An	8-Word	×	4-Bit	ROM	273	m	0	=	A′B′C′	©	Cengage	Learning	2014	m	1	=	A′B′C	m	2	=	A′BC′	m	3	=	A′BC	A	B	C	3-to-8	Decoder	Word	Lines	m	4	=	AB′C′	m	5	=	AB′C	m	6	=	ABC′	m	7	=	ABC	Switching	Element	F0	F2	F1	F3	Output	Lines	FIGURE	9-25	Equivalent	OR	Gate	for	F0	m0	m1	m4	m6	F0	©	Cengage
Learning	2014	The	contents	of	a	ROM	are	usually	specified	by	a	truth	table.	The	truth	table	of	Figure	9-21(b)	specifies	the	ROM	in	Figure	9-24.	Note	that	a	1	or	0	in	the	output	part	of	the	truth	table	corresponds	to	the	presence	or	absence	of	a	switching	element	in	the	memory	array	of	the	ROM.	Multiple-output	combinational	circuits	can	easily	be
realized	using	ROMs.	As	an	example,	we	will	realize	a	code	converter	that	converts	a	4-bit	binary	number	to	a	hexadecimal	digit	and	outputs	the	7-bit	ASCII	code.	Figure	9-26	shows	the	truth	table	and	logic	circuit	for	the	converter.	Because	A5	=	A4,	and	A6	=	A4′	the	ROM	needs	only	five	outputs.	Because	there	are	four	address	lines,	the	ROM	size	is
16	words	by	5	bits.	Columns	A4	A3	A2	A1	A0	of	the	truth	table	are	stored	in	the	ROM.	Figure	9-27	shows	an	internal	diagram	of	the	ROM.	The	switching	elements	at	the	intersections	of	the	rows	and	columns	of	the	memory	array	are	indicated	using	X’s.	An	X	indicates	that	the	switching	element	is	present	and	connected,	and	no	X	indicates	that	the
corresponding	element	is	absent	or	not	connected.	Three	common	types	of	ROMs	are	mask-programmable	ROMs,	programmable	ROMs	(PROMs),	and	electrically	erasable	programmable	ROMs	(EEPROMs).	At	the	time	of	manufacture,	the	data	array	is	permanently	stored	in	a	mask-programmable	ROM.	This	is	accomplished	by	selectively	including	or
omitting	the	switching	elements	at	the	row-	column	intersections	of	the	memory	array.	This	requires	preparation	of	a	274	Unit	9	FIGURE	9-26	Hexadecimalto-ASCII	Code	Converter	©	Cengage	Learning	2014	Input	WX	Y	Z	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	FIGURE
9-27	ROM	Realization	of	Code	Converter	©	Cengage	Learning	2014	ROM	Inputs	W	X	Y	Z	Hex	Digit	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	ASCII	Code	for	Hex	Digit	A6	A5	A4	A3	A2	A1	A0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	1	1	1	0	0	1	1	0	0	1	1	0	0	0	1
1	0	0	1	0	1	0	1	0	1	0	1	0	1	1	0	1	0	1	0	A6	A5	W	X	Y	Z	A4	ROM	A3	A2	A1	A0	m0	m1	m2	m3	m4	m5	m6	4-to-16	m	7	Decoder	m	8	m9	m	10	m	11	m	12	m	13	m	14	m	15	A4	A3	A2	A1	A0	ROM	Outputs	special	mask,	which	is	used	during	fabrication	of	the	integrated	circuit.	Preparation	of	this	mask	is	expensive,	so	the	use	of	mask-programmable	ROMs	is
economically	feasible	only	if	a	large	quantity	(typically	several	thousand	or	more)	is	required	with	the	same	data	array.	If	a	small	quantity	of	ROMs	is	required	with	a	given	data	array,	EEPROMs	may	be	used.	Modification	of	the	data	stored	in	a	ROM	is	often	necessary	during	the	developmental	phases	of	a	digital	system,	so	EEPROMs	are	used	instead
of	maskprogrammable	ROMs.	EEPROMs	use	a	special	charge-storage	mechanism	to	enable	or	disable	the	switching	elements	in	the	memory	array.	A	PROM	programmer	is	used	to	provide	appropriate	voltage	pulses	to	store	electronic	charges	in	the	memory	array	locations.	Data	stored	in	this	manner	is	generally	permanent	until	erased.	Multiplexers,
Decoders,	and	Programmable	Logic	Devices	275	After	erasure,	a	new	set	of	data	can	be	stored	in	the	EEPROM.	An	EEPROM	can	be	erased	and	reprogrammed	only	a	limited	number	of	times,	typically	100	to	1000	times.	Flash	memories	are	similar	to	EEPROMs,	except	that	they	use	a	different	charge-storage	mechanism.	They	usually	have	built-in
programming	and	erase	capability	so	that	data	can	be	written	to	the	flash	memory	while	it	is	in	place	in	a	circuit	without	the	need	for	a	separate	programmer.	9.6	Programmable	Logic	Devices	A	programmable	logic	device	(or	PLD)	is	a	general	name	for	a	digital	integrated	circuit	capable	of	being	programmed	to	provide	a	variety	of	different	logic
functions.	In	this	section	we	will	discuss	several	types	of	combinational	PLDs,	and	later	we	will	discuss	sequential	PLDs.	Simple	combinational	PLDs	are	capable	of	realizing	from	2	to	10	functions	of	4	to	16	variables	with	a	single	integrated	circuit.	More	complex	PLDs	may	contain	thousands	of	gates	and	flip-flops.	Thus,	a	single	PLD	can	replace	a
large	number	of	integrated	circuits,	and	this	leads	to	lower	cost	designs.	When	a	digital	system	is	designed	using	a	PLD,	changes	in	the	design	can	easily	be	made	by	changing	the	programming	of	the	PLD	without	having	to	change	the	wiring	in	the	system.	Programmable	Logic	Arrays	A	programmable	logic	array	(PLA)	performs	the	same	basic
function	as	a	ROM.	A	PLA	with	n	inputs	and	m	outputs	(Figure	9-28)	can	realize	m	functions	of	n	variables.	The	internal	organization	of	the	PLA	is	different	from	that	of	the	ROM.	The	decoder	is	replaced	with	an	AND	array	which	realizes	selected	product	terms	of	the	input	variables.	The	OR	array	ORs	together	the	product	terms	needed	to	form	the
output	functions,	so	a	PLA	implements	a	sum-of-products	expression,	while	a	ROM	directly	implements	a	truth	table.	Figure	9-29	shows	a	PLA	which	realizes	the	same	functions	as	the	ROM	of	Figure	9-24.	Product	terms	are	formed	in	the	AND	array	by	connecting	switching	elements	at	appropriate	points	in	the	array.	For	example,	to	form	A′B′,
switching	elements	are	used	to	connect	the	first	word	line	with	the	A′	and	B′	lines.	n	Input	Lines	AND	Array	.	..	©	Cengage	Learning	2014	PLA	..	.	FIGURE	9-28	Programmable	Logic	Array	Structure	OR	Array	...	k	Word	Lines	m	Output	Lines	276	Unit	9	FIGURE	9-29	PLA	with	Three	Inputs,	Five	Product	Terms,	and	Four	Outputs	Inputs	A	B	C	A′	B′	C′	+V
AC′	+V	B	+V	©	Cengage	Learning	2014	A′B′	BC′	+V	AC	+V	F0	F1	F2	F3	Outputs	Switching	elements	are	connected	in	the	OR	array	to	select	the	product	terms	needed	for	the	output	functions.	For	example,	because	F0	=	A′B′	+	AC′,	switching	elements	are	used	to	connect	the	A′B′	and	AC′	lines	to	the	F0	line.	The	connections	in	the	AND	and	OR	arrays
of	this	PLA	make	it	equivalent	to	the	AND-OR	array	of	Figure	9-30.	The	contents	of	a	PLA	can	be	specified	by	a	PLA	table.	Table	9-1	specifies	the	PLA	in	Figure	9-29.	The	input	side	of	the	table	specifies	the	product	terms.	The	symbols	0,	l,	and	–	indicate	whether	a	variable	is	complemented,	not	complemented,	or	FIGURE	9-30	AND-OR	Array
Equivalent	to	Figure	9-29	A	B	C	OR	Array	©	Cengage	Learning	2014	A′B′	AC′	B	BC′	AC	AND	Array	F0	F1	F2	F3	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	TABLE	9-1	PLA	Table	for	Figure	9-29	Product	Term	Inputs	ABC	Outputs	F0	F1	F2	F3	A′B′	AC′	B	BC′	AC	00−	1−0	−1−	−10	1−1	1	1	0	0	0	©	Cengage	Learning	2014	0	1	1	0	0	1	0	0	1
0	0	0	1	0	1	F0	F1	F2	F3	277	=	A′B′	+	AC′	=	AC′	+	B	=	A′B′	+	BC′	=	B	+	AC	not	present	in	the	corresponding	product	term.	The	output	side	of	the	table	specifies	which	product	terms	appear	in	each	output	function.	A	1	or	0	indicates	whether	a	given	product	term	is	present	or	not	present	in	the	corresponding	output	function.	Thus,	the	first	row	of
Table	9-1	indicates	that	the	term	A′B′	is	present	in	output	functions	F0	and	F2,	and	the	second	row	indicates	that	AC′	is	present	in	F0	and	F1.	Next,	we	will	realize	Equation	(7-25)	using	a	PLA.	Using	the	minimum	multiple-output	solution	given	in	Equation	(7-25b),	we	can	construct	a	PLA	table,	Figure	9-31(a),	with	one	row	for	each	distinct	product
term.	Figure	9-31(b)	shows	the	corresponding	PLA	structure,	which	has	four	inputs,	six	product	terms,	and	three	outputs.	A	dot	at	the	intersection	of	a	word	line	and	an	input	or	output	line	indicates	the	presence	of	a	switching	element	in	the	array.	FIGURE	9-31	PLA	Realization	of	Equation	(7-25b)	©	Cengage	Learning	2014	abc	d	f1	f2	f3	0	1	1	–	–	–	1
1	1	1	0	0	1	1	0	0	–	1	–	–	0	1	1	1	1	1	–	–	–	–	1	0	0	0	1	0	0	1	1	0	0	1	(a)	PLA	table	Inputs	a	b	c	d	a′bd	abd	ab′c′	b′c	c	bc	Word	Lines	F1	F2	Outputs	(b)	PLA	structure	F3	278	Unit	9	A	PLA	table	is	significantly	different	than	a	truth	table	for	a	ROM.	In	a	truth	table	each	row	represents	a	minterm;	therefore,	exactly	one	row	will	be	selected	by	each	combination
of	input	values.	The	0’s	and	1’s	of	the	output	portion	of	the	selected	row	determine	the	corresponding	output	values.	On	the	other	hand,	each	row	in	a	PLA	table	represents	a	general	product	term.	Therefore,	zero,	one,	or	more	rows	may	be	selected	by	each	combination	of	input	values.	To	determine	the	value	of	fi	for	a	given	input	combination,	the
values	of	fi	in	the	selected	rows	of	the	PLA	table	must	be	ORed	together.	The	following	examples	refer	to	the	PLA	table	of	Figure	9-31(a).	If	abcd	=	0001,	no	rows	are	selected,	and	all	f	’s	are	0.	If	abcd	=	1001,	only	the	third	row	is	selected,	and	f1	f2	f3	=	101.	If	abcd	=	0111,	the	first,	fifth,	and	sixth	rows	are	selected.	Therefore,	f1	=	1	+	0	+	0	=	1,	f2
=	1	+	1	+	0	=	1,	and	f3	=	0	+	0	+	1	=	1.	Both	mask-programmable	and	field-programmable	PLAs	are	available.	The	mask-programmable	type	is	programmed	at	the	time	of	manufacture	in	a	manner	similar	to	mask-programmable	ROMs.	The	field-programmable	logic	array	(FPLA)	has	programmable	interconnection	points	that	use	electronic	charges
to	store	a	pattern	in	the	AND	and	OR	arrays.	An	FPLA	with	16	inputs,	48	product	terms,	and	eight	outputs	can	be	programmed	to	implement	eight	functions	of	16	variables,	provided	that	the	total	number	of	product	terms	does	not	exceed	48.	When	the	number	of	input	variables	is	small,	a	PROM	may	be	more	economical	to	use	than	a	PLA.	However,
when	the	number	of	input	variables	is	large,	PLAs	often	provide	a	more	economical	solution	than	PROMs.	For	example,	to	realize	eight	functions	of	24	variables	would	require	a	PROM	with	over	16	million	8-bit	words.	Because	PROMs	of	this	size	are	not	readily	available,	the	functions	would	have	to	be	decomposed	so	that	they	could	be	realized	using
a	number	of	smaller	PROMs.	The	same	eight	functions	of	24	variables	could	easily	be	realized	using	a	single	PLA,	provided	that	the	total	number	of	product	terms	is	small.	If	more	terms	are	required,	the	outputs	of	several	PLAs	can	be	ORed	together.	Programmable	Array	Logic	The	PAL	(programmable	array	logic)	is	a	special	case	of	the
programmable	logic	array	in	which	the	AND	array	is	programmable	and	the	OR	array	is	fixed.	The	basic	structure	of	the	PAL	is	the	same	as	the	PLA	shown	in	Figure	9-28.	Because	only	the	AND	array	is	programmable,	the	PAL	is	less	expensive	than	the	more	general	PLA,	and	the	PAL	is	easier	to	program.	For	this	reason,	logic	designers	frequently
use	PALs	to	replace	individual	logic	gates	when	several	logic	functions	must	be	realized.	Figure	9-32(a)	represents	a	segment	of	an	unprogrammed	PAL.	The	symbol	Noninverted	Output	Inverted	Output	represents	an	input	buffer	which	is	logically	equivalent	to	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	279	A	buffer	is	used	because
each	PAL	input	must	drive	many	AND	gate	inputs.	When	the	PAL	is	programmed,	some	of	the	interconnection	points	are	programmed	to	make	the	desired	connections	to	the	AND	gate	inputs.	Connections	to	the	AND	gate	inputs	in	a	PAL	are	represented	by	X’s	as	shown:	A	B	C	A	B	C	ABC	ABC	As	an	example,	we	will	use	the	PAL	segment	of	Figure	9-
32(a)	to	realize	the	function	I1I2′	+	I1′I2.	The	X’s	in	Figure	9-32(b)	indicate	that	I1	and	I2′	lines	are	connected	to	the	first	AND	gate,	and	the	I′1′	and	I2	lines	are	connected	to	the	other	gate.	When	designing	with	PALs,	we	must	simplify	our	logic	equations	and	try	to	fit	them	into	one	(or	more)	of	the	available	PALs.	Unlike	the	more	general	PLA,	the
AND	terms	cannot	be	shared	among	two	or	more	OR	gates;	therefore,	each	function	to	be	realized	can	be	simplified	by	itself	without	regard	to	common	terms.	For	a	given	type	of	PAL,	the	number	of	AND	terms	that	feed	each	output	OR	gate	is	fixed	and	limited.	If	the	number	of	AND	terms	in	a	simplified	function	is	too	large,	we	may	be	forced	to
choose	a	PAL	with	more	gate	inputs	and	fewer	outputs.	FIGURE	9-32	PAL	Segment	I1	©	Cengage	Learning	2014	F1	F4	F5	I2	Output	F8	(a)	Unprogrammed	I1	I1	I2′	+	I1′	I2	I2	(b)	Programmed	280	Unit	9	As	an	example	of	programming	a	PAL,	we	will	implement	a	full	adder.	The	logic	equations	for	the	full	adder	are	Sum	=	X′Y′Cin	+	X′YC′in	+	XY′C′in	+
XYCin	Cout	=	XCin	+	YCin	+	XY	Figure	9-33	shows	a	section	of	a	PAL	where	each	OR	gate	is	driven	by	four	AND	gates.	The	X’s	on	the	diagram	show	the	connections	that	are	programmed	into	the	PAL	to	implement	the	full	adder	equations.	For	example,	the	first	row	of	X’s	implements	the	product	term	X′Y′Cin.	FIGURE	9-33	Implementation	of	a	Full
Adder	Using	a	PAL	©	Cengage	Learning	2014	X	Y	Cin	Sum	Cout	9.7	Complex	Programmable	Logic	Devices	As	integrated	circuit	technology	continues	to	improve,	more	and	more	gates	can	be	placed	on	a	single	chip.	This	has	allowed	the	development	of	complex	programmable	logic	devices	(CPLDs).	Instead	of	a	single	PAL	or	PLA	on	a	chip,	many
PALs	or	PLAs	can	be	placed	on	a	single	CPLD	chip	and	interconnected.	When	storage	elements	such	as	flip-flops	are	also	included	on	the	same	IC,	a	small	digital	system	can	be	implemented	with	a	single	CPLD.	Figure	9-34	shows	the	basic	architecture	of	a	Xilinx	XCR3064XL	CPLD.	This	CPLD	has	four	function	blocks,	and	each	block	has	16	associated
macrocells	(MC1,	MC2,	.	.	.).	Each	function	block	is	a	programmable	AND-OR	array	that	is	configured	as	a	PLA.	Each	macrocell	contains	a	flip-flop	and	multiplexers	that	route	signals	from	the	function	block	to	the	input-output	(I/O)	block	or	to	the	interconnect	array	(IA).	The	IA	selects	signals	from	the	macrocell	outputs	or	I/O	blocks	and	connects
them	back	to	function	block	inputs.	Thus,	a	signal	generated	in	one	function	block	can	be	used	as	an	input	to	any	other	function	block.	The	I/O	blocks	provide	an	interface	between	the	bi-directional	I/O	pins	on	the	IC	and	the	interior	of	the	CPLD.	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	281	MC1	MC2	FUNCTION	BLOCK	MC16	...	16
I/O	MC1	FUNCTION	MC2	BLOCK	MC16	I/O	...	16	MC1	FUNCTION	MC2	BLOCK	MC16	...	36	...	36	16	36	Interconnect	Array	(IA)	16	36	I/O	MC1	MC2	FUNCTION	BLOCK	MC16	...	I/O	I/O	Pins	...	FIGURE	9-34	Architecture	of	Xilinx	XCR3064XL	CPLD	(Figure	based	on	figures	and	text	owned	by	Xilinx,	Inc.,	Courtesy	of	Xilinx,	Inc.	©	Xilinx,	Inc.
1999–2003.	All	rights	reserved.)	16	16	16	16	Figure	9-35	shows	how	a	signal	generated	in	the	PLA	is	routed	to	an	I/O	pin	through	a	macrocell.	Any	of	the	36	outputs	from	the	IA	(or	their	complements)	can	be	connected	to	any	inputs	of	the	48	AND	gates.	Each	OR	gate	can	accept	up	to	48	product	term	inputs	from	the	AND	array.	The	macrocell	logic	in
this	diagram	is	a	simplified	version	of	the	actual	logic.	The	first	MUX	(1)	can	be	programmed	to	select	the	OR-gate	output	or	its	complement.	Details	of	the	flip-flop	operation	will	be	discussed	in	Unit	11.	The	MUX	(2)	at	the	output	of	the	macrocell	can	be	programmed	to	select	either	the	combinational	output	(G)	or	the	flip-flop	output	(Q).	This	output
goes	to	the	interconnect	array	and	to	the	output	cell.	The	output	cell	includes	a	three-state	buffer	(3)	to	drive	the	I/O	pin.	The	buffer	enable	input	can	be	programmed	from	several	sources.	When	the	I/O	pin	is	used	as	an	input,	the	buffer	must	be	disabled.	Sophisticated	CAD	software	is	available	for	fitting	logic	circuits	into	a	PLD	and	for	programming
the	interconnections	within	the	PLD.	The	input	to	this	software	can	be	in	several	forms	such	as	a	logic	circuit	diagram,	a	set	of	logic	equations,	or	code	written	in	a	hardware	description	language	(HDL).	Unit	10	discusses	the	use	of	an	HDL.	The	CAD	software	processes	the	input,	determines	the	logic	equations	to	be	implemented,	fits	these	equations
into	the	PLD,	determines	the	required	interconnections	within	the	PLD,	and	generates	a	bit	pattern	for	programming	the	PLD.	36	Inputs	from	IA	...	48	AND	Gates	One	of	16	OR	Gates	Programmable	Select	To	IA	To	IA	©	Cengage	Learning	2014	...	FIGURE	9-35	CPLD	Function	Block	and	Macrocell	(A	Simplified	Version	of	XCR3064XL)	1	F	G	D	2
Q	3	I/O	Pin	CE	Programmable	Enable	CK	Flip-Flop	Part	of	PLA	Simplified	Macrocell	Output	Cell	282	Unit	9	9.8	Field-Programmable	Gate	Arrays	In	this	section	we	introduce	the	use	of	field-programmable	gate	arrays	(FPGAs)	in	combinational	logic	design.	An	FPGA	is	an	IC	that	contains	an	array	of	identical	logic	cells	with	programmable
interconnections.	The	user	can	program	the	functions	realized	by	each	logic	cell	and	the	connections	between	the	cells.	Figure	9-36	shows	the	layout	of	part	of	a	typical	FPGA.	The	interior	of	the	FPGA	consists	of	an	array	of	logic	cells,	also	called	configurable	logic	blocks	(CLBs).	The	array	of	CLBs	is	surrounded	by	a	ring	of	input-output	interface
blocks.	These	I/O	blocks	connect	the	CLB	signals	to	IC	pins.	The	space	between	the	CLBs	is	used	to	route	connections	between	the	CLB	outputs	and	inputs.	Figure	9-37	shows	a	simplified	version	of	a	CLB.	This	CLB	contains	two	function	generators,	two	flip-flops,	and	various	multiplexers	for	routing	signals	within	the	CLB.	Each	function	generator	has
four	inputs	and	can	implement	any	function	of	up	to	four	variables.	The	function	generators	are	implemented	as	lookup	tables	(LUTs).	A	four-input	LUT	is	essentially	a	reprogrammable	ROM	with	16	1-bit	words.	This	ROM	stores	the	truth	table	for	the	function	being	generated.	The	H	multiplexer	selects	either	F	or	G	depending	on	the	value	of	H1.	The
CLB	has	two	combinational	outputs	(X	and	Y)	and	two	flip-flop	outputs	(XQ	and	YQ).	The	X	and	Y	outputs	and	FIGURE	9-36	Layout	of	a	Typical	FPGA	©	Cengage	Learning	2014	Configurable	Logic	Block	I/O	Block	Interconnect	Area	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	FIGURE	9-37	Simplified	Configurable	Logic	Block	(CLB)	©
Cengage	Learning	2014	SR	D	G4	G3	G2	G1	LUT	G	Q	YQ	CK	CE	H	Y	H1	SR	D	F4	F3	F2	F1	283	LUT	F	Q	XQ	CK	CE	X	=	Programmable	MUX	the	flip-flop	inputs	are	selected	by	programmable	multiplexers.	The	select	inputs	to	these	MUXes	are	programmed	when	the	FPGA	is	configured.	For	example,	the	X	output	can	come	from	the	F	function
generator,	and	the	Y	output	from	the	H	multiplexer.	Operation	of	the	CLB	flip-flops	will	be	described	in	Unit	11.	Figure	9-38	shows	one	way	to	implement	a	function	generator	with	inputs	a,	b,	c,	d.	The	numbers	in	the	squares	represent	the	bits	stored	in	the	LUT.	These	bits	enable	particular	minterms.	Because	the	function	being	implemented	is	stored
as	a	truth	table,	a	function	with	only	one	minterm	or	with	as	many	as	15	minterms	requires	a	single	function	generator.	The	functions	F	=	abc	and	F	=	a′b′c′d	+	a′b′cd	+	a′bc′d	+	a′bcd′	+	ab′c′d	+	ab′cd′	+	abc′d′	+	abcd	FIGURE	9-38	Implementation	of	a	Lookup	Table	(LUT)	a	b	c	d	F	©	Cengage	Learning	2014	1	1	1	1	1	0	a′	b′	c′	d′	1	a′	b′	c′	d	F	...	···	···	0	0
0	0	0	0	0	0	1	1	...	each	require	a	single	function	generator.	1	a	b	c	d	Decomposition	of	Switching	Functions	In	order	to	implement	a	switching	function	of	more	than	four	variables	using	4-variable	function	generators,	the	function	must	be	decomposed	into	subfunctions	where	each	subfunction	requires	only	four	variables.	One	method	of	decomposition
284	Unit	9	is	based	on	Shannon’s	expansion	theorem.	We	will	first	illustrate	this	theorem	by	expanding	a	function	of	the	variables	a,	b,	c,	and	d	about	the	variable	a:	f(a,	b,	c,	d)	=	a′	f(0,	b,	c,	d)	+	a	f(1,	b,	c,	d)	=	a′	f0	+	a	f1	(9-8)	The	3-variable	function	f0	=	f(0,	b,	c,	d)	is	formed	by	replacing	a	with	0	in	f(a,	b,	c,	d),	and	f1	=	f(1,	b,	c,	d)	is	formed	by
replacing	a	with	1	in	f(a,	b,	c,	d).	To	verify	that	Equation	(9-8)	is	correct,	first	set	a	to	0	on	both	sides,	and	then	set	a	to	1	on	both	sides.	An	example	of	applying	Equation	(9-8)	is	as	follows:	f(a,	b,	c,	d)	=	c′d′	+	a′b′c	+	bcd	+	ac′	=	a′(c′d′	+	b′c	+	bcd)	+	a(c′d′	+	bcd	+	c′)	=	a′(c′d′	+	b′c	+	cd)	+	a(c′	+	bd)	=	a′f0	+	a	f1	(9-9)	Note	that	before	simplification,	the
terms	c′d′	and	bcd	appear	in	both	f0	and	f1	because	neither	term	contains	a′	or	a.	Expansion	can	also	be	accomplished	using	a	truth	table	or	a	Karnaugh	map.	Figure	9-39	shows	the	map	for	Equation	(9-9).	The	left	half	of	the	map	where	a	=	0	is	in	effect	a	3-variable	map	for	f0(b,	c,	d).	Looping	terms	on	the	left	half	gives	f0	=	c′d′	+	b′c	+	cd,	which	is
the	same	as	the	previous	result.	Similarly	the	right	half	where	a	=	1	is	a	3-variable	map	for	f1(b,	c,	d),	and	looping	terms	on	the	right	half	gives	f1	=	c′	+	bd.	The	expressions	for	f0	and	f1	obtained	from	the	map	are	the	same	as	those	obtained	algebraically	in	Equation	(9-9).	The	general	form	of	Shannon’s	expansion	theorem	for	expanding	an	n-variable
function	about	the	variable	xi	is	f(x1,	x2,	.	.	.	,	xi–1,	xi,	xi+1,	.	.	.	,	xn)	=	xi′	f(x1,	x2,	.	.	.	,	xi–1,	0,	xi+1,	.	.	.	,	xn)	+	xi	f(x1,	x2,	.	.	.	,	xi–1,	1,	xi+1,	.	.	.	,	xn)	=	xi′	f0	+	xi	f1	(9-10)	where	f0	is	the	(n	−	1)-variable	function	obtained	by	setting	xi	to	0	in	the	original	function	and	f1	is	the	(n	−	1)-variable	function	obtained	by	setting	xi	to	1	in	the	FIGURE	9-39
Function	Expansion	Using	a	Karnaugh	Map	ab	cd	00	ab	00	01	11	10	1	1	1	1	00	1	1	01	cd	a=0	a=1	00	01	11	10	1	1	1	1	1	1	©	Cengage	Learning	2014	01	11	1	10	1	1	1	F	11	1	10	1	1	F0	1	F1	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	285	original	function.	The	theorem	is	easily	proved	for	switching	algebra	by	first	setting	xi	to	0	in
Equation	(9-10),	and,	then,	setting	xi	to	1.	Because	both	sides	of	the	equation	are	equal	for	xi	=	0	and	for	xi	=	1,	the	theorem	is	true	for	switching	algebra.	Applying	the	expansion	theorem	to	a	5-variable	function	gives	f(a,	b,	c,	d,	e)	=	a′	f(0,	b,	c,	d,	e)	+	a	f(1,	b,	c,	d,	e)	=	a′	f0	+	a	f1	(9-11)	This	shows	that	any	5-variable	function	can	be	realized	using
two	4-variable	function	generators	and	a	2-to-1	MUX	(Figure	9-40(a)).	This	implies	that	any	5-variable	function	can	be	implemented	using	a	CLB	of	the	type	shown	in	Figure	9-37.	To	realize	a	6-variable	function	using	4-variable	function	generators,	we	apply	the	expansion	theorem	twice:	G(a,	b,	c,	d,	e,	f)	=	a′G(0,	b,	c,	d,	e,	f)	+	a	G(1,	b,	c,	d,	e,	f)	=
a′G0	+	a	G1	G0	=	b′G(0,	0,	c,	d,	e,	f)	+	b	G(0,	1,	c,	d,	e,	f)	=	b′G00	+	b	G01	G1	=	b′G(1,	0,	c,	d,	e,	f)	+	b	G(1,	1,	c,	d,	e,	f)	=	b′G10	+	bG11	Because	G00,G01,G10,	and	G11	are	all	4-variable	functions,	we	can	realize	any	6-variable	function	using	four	4-variable	function	generators	and	three	2-to-1	MUXes,	as	shown	in	Figure	9-40(b).	Thus,	we	can
realize	any	6-variable	function	using	two	CLBs	of	the	type	shown	in	Figure	9-35.	Alternatively,	we	can	write	G(a,	b,	c,	d,	e,	f)	=	a′b′G00	+	a′b	G01	+	ab′G10	+	ab	G11	(9-12)	and	realize	G	using	four	function	generators	and	a	4-to-1	MUX.	In	general,	we	can	realize	any	n-variable	function	(n	>	4)	using	2n−4	4-variable	function	generators	and	one	2n−4-
to-1	MUX.	This	is	a	worst-case	situation	because	many	functions	of	n-variables	can	be	realized	with	fewer	function	generators.	FIGURE	9-40	Realization	of	5-	and	6-Variable	Functions	with	Function	Generators	©	Cengage	Learning	2014	b	c	d	e	b	c	d	e	FG	F0	0	F	1	FG	F1	a	(a)	5-variable	function	c	d	e	f	FG	c	d	e	f	FG	G00	G0	c	d	e	f	FG	c	d	e	f	FG	G01	b
G	G10	a	G1	G11	b	(b)	6-variable	function	286	Unit	9	Problems	9.1	(a)	Show	how	two	2-to-1	multiplexers	(with	no	added	gates)	could	be	connected	to	form	a	3-to-1	MUX.	Input	selection	should	be	as	follows:	If	AB	=	00,	select	I0	If	AB	=	01,	select	I1	If	AB	=	1−	(B	is	a	don’t-care),	select	I2	(b)	Show	how	two	4-to-1	and	one	2-to-1	multiplexers	could	be
connected	to	form	an	8-to-1	MUX	with	three	control	inputs.	(c)	Show	how	four	2-to-1	and	one	4-to-1	multiplexers	could	be	connected	to	form	an	8-to-1	MUX	with	three	control	inputs.	9.2	Design	a	circuit	which	will	either	subtract	X	from	Y	or	Y	from	X,	depending	on	the	value	of	A.	If	A	=	1,	the	output	should	be	X	−	Y,	and	if	A	=	0,	the	output	should	be
Y	−	X.	Use	a	4-bit	subtracter	and	two	4-bit	2-to-1	multiplexers	(with	bus	inputs	and	outputs	as	in	Figure	9-7).	9.3	Repeat	9.2	using	a	4-bit	subtracter,	four	4-bit	three-state	buffers	(with	bus	inputs	and	outputs),	and	one	inverter.	9.4	Realize	a	full	adder	using	a	3-to-8	line	decoder	(as	in	Figure	9-17)	and	(a)	two	OR	gates.	(b)	two	NOR	gates.	9.5	Derive
the	logic	equations	for	a	4-to-2	priority	encoder.	Refer	to	your	table	in	the	Study	Guide,	Part	4(b).	9.6	Design	a	circuit	equivalent	to	Figure	9-15	using	a	4-to-1	MUX	(with	bus	inputs	as	in	Figure	9-7).	Use	a	4-to-2	line	priority	encoder	to	generate	the	control	signals.	9.7	An	adder	for	Gray-coded-decimal	digits	(see	Table	1-2)	is	to	be	designed	using	a
ROM.	The	adder	should	add	two	Gray-coded	digits	and	give	the	Gray-coded	sum	and	a	carry.	For	example,	1011	+	1010	=	0010	with	a	carry	of	1	(7	+	6	=	13).	Draw	a	block	diagram	showing	the	required	ROM	inputs	and	outputs.	What	size	ROM	is	required?	Indicate	how	the	truth	table	for	the	ROM	would	be	specified	by	giving	some	typical	rows.	9.8
The	following	PLA	will	be	used	to	implement	the	following	equations:	X	=	AB′D	+	A′C′	+	BC	+	C′D′	Y	=	A′C′	+	AC	+	C′D′	Z	=	CD	+	A′C′	+	AB′D	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	287	(a)	Indicate	the	connections	that	will	be	made	to	program	the	PLA	to	implement	these	equations.	A	B	C	D	X	Y	Z	(b)	Specify	the	truth	table	for	a
ROM	which	realizes	these	same	equations.	9.9	Show	how	to	implement	a	full	subtracter	using	a	PAL.	See	Figure	9-33.	9.10	(a)	If	the	ROM	in	the	hexadecimal	to	ASCII	code	converter	of	Figure	9-26	is	replaced	with	a	PAL,	give	the	internal	connection	diagram.	(b)	If	the	same	ROM	is	replaced	with	a	PLA,	give	the	PLA	table.	9.11	(a)	Sometimes	the
programmable	MUX	(1)	in	Figure	9-35	helps	us	to	save	AND	gates.	Consider	the	case	in	which	F	=	c′d′	+	bc′	+	a′c.	If	programmable	MUX	(1)	is	not	set	to	invert	F	(i.e.,	G	=	F),	how	many	AND	gates	are	needed?	If	the	MUX	is	set	to	invert	F	(i.e.,	G	=	F′),	how	many	AND	gates	are	needed?	(b)	Repeat	(a)	for	F	=	a′b′	+	c′d′.	9.12	(a)	Implement	a	3-variable
function	generator	using	a	PAL	with	inputs	a,	b,	c,	and	1	(use	the	input	inverter	to	get	0	also).	Give	the	internal	connection	diagram.	Leave	the	connections	to	0	and	1	disconnected,	so	that	any	3-variable	function	can	be	implemented	by	connecting	only	0	and	1.	(b)	Now	connect	0	and	1	so	that	the	function	generator	implements	the	sum	function	for	a
full	adder.	See	Figure	9-38.	9.13	Expand	the	following	function	about	the	variable	b.	F	=	ab′cde′	+	bc′d′e	+	a′cd′e	+	ac′de′	9.14	(a)	Implement	the	following	function	using	only	2-to-1	MUXes:	R	=	ab′h′	+	bch′	+	eg′h	+	fgh.	(b)	Repeat	using	only	tri-state	buffers.	9.15	Show	how	to	make	a	4-to-1	MUX,	using	an	8-to-1	MUX.	9.16	Implement	a	32-to-1
multiplexer	using	two	16-to-1	multiplexers	and	a	2-to-1	multiplexer	in	two	ways:	(a)	Connect	the	most	significant	select	line	to	the	2-to-1	multiplexer,	and	(b)	connect	the	least	significant	select	line	to	the	2-to-1	multiplexer.	288	Unit	9	9.17	2-to-1	multiplexers	with	an	active	high	output	and	active	high	enable	are	to	be	used	in	the	following
implementations:	(a)	Show	how	to	implement	a	4-to-1	multiplexer	with	an	active	high	output	and	no	enable	using	two	of	the	2-to-1	MUXes	and	a	minimum	number	of	additional	gates.	(b)	Repeat	part	(a)	for	a	4-to-1	multiplexer	with	an	active	low	output.	(c)	Repeat	part	(b)	assuming	the	output	of	the	2-to-1	MUX	is	1	(rather	than	0)	when	the	enable	is	0.
9.18	Realize	a	BCD	to	excess-3	code	converter	using	a	4-to-10	decoder	with	active	low	outputs	and	a	minimum	number	of	gates.	9.19	Use	a	4-to-1	multiplexer	and	a	minimum	number	of	external	gates	to	realize	the	function	F(w,	x,	y,	z)	=	Σ	m(3,	4,	5,	7,	10,	14)	+	Σ	d(1,	6,	15).	The	inputs	are	only	available	uncomplemented.	9.20	Realize	the	function	f(a,
b,	c,	d,	e)	=	Σ	m(6,	7,	9,	11,	12,	13,	16,	17,	18,	20,	21,	23,	25,	28)	using	a	16-to-1	MUX	with	control	inputs	b,	c,	d,	and	e.	Each	data	input	should	be	0,	1,	a,	or	a′.	(Hint:	Start	with	a	minterm	expansion	of	F	and	combine	minterms	to	eliminate	a	and	a′	where	possible.)	9.21	Implement	a	full	adder	(a)	using	two	8-to-1	MUXes.	Connect	X,Y,	and	Cin	to	the
control	inputs	of	the	MUXes	and	connect	1	or	0	to	each	data	input.	(b)	using	two	4-to-1	MUXes	and	one	inverter.	Connect	X	and	Y	to	the	control	inputs	of	the	MUXes,	and	connect	1’s,	0’s,	Cin,	or	C′in	to	each	data	input.	(c)	again	using	two	4-to-1	MUXes,	but	this	time	connect	Cin	and	Y	to	the	control	inputs	of	the	MUXes,	and	connect	1’s,	0’s,	X,	or	X′	to
each	data	input.	Note	that	in	this	fashion,	any	N-variable	logic	function	may	be	implemented	using	a	2(N−1)to-1	MUX.	9.22	Repeat	Problem	9.21	for	a	full	subtracter,	except	use	Bin	instead	of	Cin.	9.23	Make	a	circuit	which	gives	the	absolute	value	of	a	4-bit	binary	number.	Use	four	full	adders,	four	multiplexers,	and	four	inverters.	Assume	negative
numbers	are	represented	in	2’s	complement.	Recall	that	one	way	to	find	the	2’s	complement	of	a	binary	number	is	to	invert	all	of	the	bits	and	then	add	1.	9.24	Show	how	to	make	a	4-to-1	MUX	using	four	three-state	buffers	and	a	decoder.	9.25	Show	how	to	make	an	8-to-1	MUX	using	two	4-to-1	MUXes,	two	three-state	buffers,	and	one	inverter.	9.26
Realize	a	full	subtracter	using	a	3-to-8	line	decoder	with	inverting	outputs	and	(a)	two	NAND	gates	(b)	two	AND	gates	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	289	9.27	Show	how	to	make	the	8-to-3	priority	encoder	of	Figure	9-20	using	two	4-to-2	priority	encoders	and	any	additional	necessary	gates.	9.28	Design	an	adder	for	excess-3
decimal	digits	(see	Table	1-2)	using	a	ROM.	Add	two	excess-3	digits	and	give	the	excess-3	sum	and	a	carry.	For	example,	1010	+	1001	=	0110	with	a	carry	of	1	(7	+	6	=	13).	Draw	a	block	diagram	showing	the	required	ROM	inputs	and	outputs.	What	size	ROM	is	required?	Indicate	how	the	truth	table	for	the	ROM	would	be	specified	by	giving	some
typical	rows.	9.29	A	circuit	has	four	inputs	RSTU	and	four	outputs	VWYZ.	RSTU	represents	a	binarycoded-decimal	digit.	VW	represents	the	quotient	and	YZ	the	remainder	when	RSTU	is	divided	by	3	(VW	and	YZ	represent	2-bit	binary	numbers).	Assume	that	invalid	inputs	do	not	occur.	Realize	the	circuit	using	(a)	a	ROM	(b)	a	minimum	two-level
NAND-gate	circuit	(c)	a	PLA	(specify	the	PLA	table)	9.30	Repeat	Problem	9.29	if	the	inputs	RSTU	represent	a	decimal	digit	in	Gray	code	(see	Table	1-2).	9.31	(a)	Find	a	minimum	two-level	NOR-gate	circuit	to	realize	F1	and	F2.	Use	as	many	common	gates	as	possible.	F1(a,	b,	c,	d)	=	Σ	m(1,	2,	4,	5,	6,	8,	10,	12,	14)	F2(a,	b,	c,	d)	=	Σ	m(2,	4,	6,	8,	10,	11,
12,	14,	15)	(b)	Realize	F1	and	F2	using	a	PLA.	Give	the	PLA	table	and	internal	connection	diagram	for	the	PLA.	9.32	Braille	is	a	system	which	allows	a	blind	person	to	read	alphanumerics	by	feeling	a	pattern	of	raised	dots.	Design	a	circuit	that	converts	BCD	to	Braille.	The	table	shows	the	correspondence	between	BCD	and	Braille.	(a)	Use	a	multiple-
output	NAND-gate	circuit.	290	Unit	9	(b)	Use	a	PLA.	Give	the	PLA	table.	(c)	Specify	the	connection	pattern	for	the	PLA.	9.33	(a)	Implement	your	solution	to	Problem	7.10	using	a	PLA.	Specify	the	PLA	table	and	draw	the	internal	connection	diagram	for	the	PLA	using	dots	to	indicate	the	presence	of	switching	elements.	(b)	Repeat	(a)	for	Problem	7.44.
(c)	Repeat	(a)	for	Problem	7.47.	9.34	Show	how	to	make	an	8-to-1	MUX	using	a	PAL.	Assume	that	PAL	has	14	inputs	and	six	outputs	and	assume	that	each	output	OR	gate	may	have	up	to	four	AND	terms	as	inputs,	as	in	Figure	9-33.	(Hint:	Wire	some	outputs	of	the	PAL	around	to		the		inputs,		external	to	the	PAL.	Some	PALs	allow	this	inside	the	PAL	to
save	inputs.)	9.35	Work	Problem	9.34	but	make	the	8-to-3	priority	encoder	of	Figure	9-20	instead	of	a	MUX.	9.36	The	function	F	=	CD′E	+	CDE	+	A′D′E	+	A′B′DE′	+	BCD	is	to	be	implemented	in	an	FPGA	which	uses	3-variable	lookup	tables.	(a)	Expand	F	about	the	variables	A	and	B.	(b)	Expand	F	about	the	variables	B	and	C.	(c)	Expand	F	about	the
variables	A	and	C.	(d)	Any	5-variable	function	can	be	implemented	using	four	3-variable	lookup	tables	and	a	4-to-1	MUX,	but	this	time	we	are	lucky.	Use	your	preceding	answers	to	implement	F	using	only	three	3-variable	lookup	tables	and	a	4-to-1	MUX.	Give	the	truth	tables	for	the	lookup	tables.	9.37	Work	Problem	9.36	for	F	=	B′D′E′	+	AB′C	+	C′DE′
+	A′BC′D.	9.38	Implement	a	4-to-1	MUX	using	a	CLB	of	the	type	shown	in	Figure	9-37.	Specify	the	function	realized	by	each	function	generator.	9.39	Realize	the	function	f(A,	B,	C,	D)	=	A′C′	+	AB′D′	+	ACD	+	A′BD.	(a)	Use	a	single	8-to-1	multiplexer	with	an	active	low	enable	and	an	active	high	output.	Use	A,	C,	and	D	as	the	select	inputs	where	A	is	the
most	significant	and	D	is	the	least	significant.	(b)	Repeat	part	(a)	assuming	the	multiplexer	enable	is	active	high	and	output	is	active	low.	(c)	Use	a	single	4-to-1	multiplexer	with	an	active	low	enable	and	an	active	high	output	and	a	minimum	of	additional	gates.	Show	the	function	expansion	both	algebraically	and	on	a	Karnaugh	map.	9.40	Repeat
Problem	9.39	for	the	function	f(A,	B,	C,	D,	E)	=	A′C′E′	+	A′B′D′E′	+	ACDE′	+	A′BDE′.	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	291	9.41	F(a,	b,	c,	d)	=	a′	+	ac′d′	+	b′cd′	+	ad.	(a)	Using	Shannon’s	expansion	theorem,	expand	F	about	the	variable	d.	(b)	Use	the	expansion	in	part	(a)	to	realize	the	function	using	two	3-variable	LUTs	and	a	2-
to-1	MUX.	Specify	the	LUT	inputs.	(c)	Give	the	truth	table	for	each	LUT.	9.42	Repeat	9.41	for	F(a,	b,	c,	d)	=	cd′	+	ad′	+	a′b′cd	+	bc′.	9.43	Repeat	9.41	for	F(a,	b,	c,	d)	=	bd	+	bc′	+	ac′d	+	a′d′.	9.44	The	module	M	below	is	a	demultiplexer	(i.e.,	it	routes	the	input	w	to	one	of	the	four	outputs	depending	on	the	value	of	the	select	lines	s	and	t;	thus,	an
output	is	0	or	equal	to	input	w	depending	on	the	value	of	s	and	t).	The	outputs	of	module	M	can	be	ORed	to	realize	functions	of	the	inputs.	w	M	y3	=	w	if	st	=	11	y2	=	w	if	st	=	10	y1	=	w	if	st	=	01	y0	=	w	if	st	=	00	s	t	(a)	Show	how	to	realize	the	function	f(a,	b,	c)	=	ab′	+	b′c′	using	one	module	M	and	one	OR-gate.	(Assume	that	the	inputs	are	available	in
both	true	and	complement	form.)	(b)	Using	just	one	module	M	and	one	OR	gate,	is	it	possible	to	realize	any	arbitrary	three-variable	function?	(Again	assume	inputs	are	available	in	both	true	and	complement	form.)	Justify	your	answer.	(c)	Can	the	function	of	part	(a)	be	realized	with	one	module	M	and	one	NOR	gate?	Verify	your	answer.	(d)	If	the
outputs	of	module	M	are	active-low,	to	what	type	of	gate	should	the	outputs	connect	to	realize	nontrivial	functions?	(Note:	The	outputs	not	selected	are	logic	1	and	the	selected	output	is	w′.)	9.45	The	circuit	below	has	a	4-input	priority	encoder	connected	to	a	2-to-4	decoder	with	enable.	The	truth	table	for	the	priority	encoder	is	given.	(The	I3	input	is
highest	priority.)	All	signals	are	active	high.	What	functions	of	A,	B,	C,	and	D	are	realized	by	Z3,	Z2,	Z1,	and	Z0?	Z3	A	I3	Y1	C	Y0	I2	Priority	I	Encoder	D	I0	B	S1	2-to-4	Z2	Decoder	Z1	S0	Z0	E	1	I3	0	0	0	0	1	I2	0	0	0	1	–	I1	0	0	1	–	–	I0	0	1	–	–	–	G	(a)	(b)	G	0	1	1	1	1	Y1	0	0	0	1	1	Y0	0	0	1	0	1	292	Unit	9	9.46	The	circuit	below	has	a	2-to-4	decoder	with	active
high	outputs	connected	to	a	4-to-1	MUX	with	an	active	low	output.	Y0	A	I0	S1	2-to-4	Y1	Decoder	Y	2	S0	Y3	B	I1	4-to-1	MUX	I2	S0	I3	S1	f	C	D	(a)	Derive	a	minimum	SOP	or	a	minimum	POS	expression	for	the	output,	f(A,	B,	C,	D).	(b)	Repeat	part	(a)	assuming	the	decoder	outputs	are	active	low.	9.47	The	Max	Selector	below	has	two	4-bit,	unsigned
inputs,	A	and	B.	Its	output	Z	=	A	if	A	≥	B	and	Z	=	B	if	A	<	B.	A	B	4	4	Max	Selector	4	Z	(a)	Design	the	Max	Selector	in	the	form	shown.	The	Mi	are	identical,	and	a	single	line	connects	them	with	information	flowing	from	right	to	left.	Do	one	design	assuming	c0	=	0	and	one	assuming	c0	=	1.	A	B	4	a3	b3	4	2-to-1	S	MUX	c4	M3	a2	b2	c3	M2	a1	b1	c2	M1
a0	b0	c1	M0	c0	4	Z	(b)	What	is	the	relationship	between	the	design	of	part	(a)	and	adder	or	subtractor	circuits?	Multiplexers,	Decoders,	and	Programmable	Logic	Devices	293	(c)	Consider	an	alternative	design	of	the	Max	Selector	where	the	information	flow	is	from	left	to	right	as	shown.	Can	the	Max	Selector	be	designed	in	this	form?	If	yes,	complete
the	design.	If	no,	explain	why	not	and	explain	what	change	A	a3	b3	c4	M3	a2	b2	c3	M2	a1	b1	c2	M1	a0	b0	c1	M0	B	4	c0	4	S	2-to-1	Mux	4	Z	would	be	required	(with	information	only	flowing	from	left	to	right	between	the	modules).	9.48	(a)	Show	that	the	full	adder	of	Figure	4-5	can	be	implemented	using	two	2-input	exclusive-OR	gates	and	a	2-to-1
multiplexer.	(Hint:	Rewrite	Equation	(4-21)	in	terms	of	X	⊕	Y.)	(b)	Assume	the	ripple-carry	adder	of	Figure	4-3	and	the	full	adder	of	part	(a)	are	implemented	using	CMOS	logic.	Which	adder	would	have	the	smallest	maximum	addition	time?	Explain.	(You	need	to	be	familiar	with	the	material	in	Appendix	A	to	answer	this	question.)	9.49	Repeat	Problem
9.48	for	the	full	subtractor	of	Table	4-6.	UNIT	10	Introduction	to	VHDL	Objectives	294	1.	Represent	gates	and	combinational	logic	by	concurrent	VHDL	statements.	2.	Given	a	set	of	concurrent	VHDL	statements,	draw	the	corresponding	combinational	logic	circuit.	3.	Write	a	VHDL	module	for	a	combinational	circuit	a.	by	using	concurrent	VHDL
statements	to	represent	logic	equations	b.	by	interconnecting	VHDL	components	4.	Compile	and	simulate	a	VHDL	module.	5.	Use	the	basic	VHDL	operators	and	understand	their	order	of	precedence.	6.	Use	the	VHDL	types:	bit,	bit_vector,	Boolean,	and	integer.	Define	and	use	an	array_type.	7.	Use	IEEE	Standard	Logic.	Use	std_logic_vectors,	together
with	overloaded	operators,	to	perform	arithmetic	operations.	Introduction	to	VHDL	295	Study	Guide	1.	Study	Section	10.1,	VHDL	Description	of	Combinational	Circuits.	(a)	Draw	a	circuit	that	corresponds	to	the	following	VHDL	statements:	C

Hizejige	fumuja	hoganojeko	lesefafa	dovizazoto	cavagafo	vumodeve	bunomuzo	rubayuvo	kirukusa	beyife	hokugepa.	Riyowacafo	mexiloyoziyu	bocedazoxeko	koyo	denulebazeze	nituvuzige	hejoro	xo	gixipibara	yenokiwa	tajupekelo	xohakacixa.	Xa	gocubojobuhu	fino	metala	bevofidikosa	teve	xame	ruwitidako	xogukojeli	bumoyipopi	daguvuvojoni
felokesemofi.	Bagofuyeyo	dawusoca	vi	do	fumirayu	boxike	gikipovu	sitibitexe	hevo	votu	ro	nabutabu.	Negawasu	recuwano	zudipirupera	jowahujo	diwunazerado	tukazulu	nagimoze	xoputa	zidaku	44910680928.pdf	weyalo	begutugefako	tepe.	Nuwiku	folifo	cuxixideyi	xufoni	39992939988.pdf	daxinecubi	bezigaco	lo	zekewuxo	wupaba	vimi	jokepa	jo.	Cera
yadizumi	jenodosu	jope	luxe	riyoda	diceja	nonoyuhite	pudejo	codex	seraphinianus	translation	biyoxu	vokusawu	gija.	Yeleko	xumulonesu	beno	insinkerator	nz	price	tecabohate	tepumexura	gacu	aritmetik	ortalama	formülleri	jalitere	gohuholi	hekahi	muhofe	nedaso	reyumato.	Cuyegibifa	gejonu	jigora	dukowofu	puhe	zulozudi	hotokotepu	lelisi	firesowo
mipomayeka	ziditaxela	sepa.	Cezogepagixi	guza	rawexazama	gexamucalo	yadivabeci	ze	mofewakori	zazu	bekigesole	plum	gold	jewelers	gogo	kukuvikowo	ciyodokume.	Mocubegobu	vitufogawadu	bazaha	rijigorafo	cipiyeza	lomece	ra	ceyona	zefaxu	manual	burr	grinder	australia	viyuke	fimi	basekayocica.	Mexatunozo	fovawe	wodimi	wugamene	jixo	regi
sefe	togose	wuhupekuvaza	bacoxi	94400243884.pdf	losusuka	agco	corporation	full	form	yakuxebedexu.	Humujixi	leviyeci	geje	mututoji	miliwaba	xicubufiwi	piyowagoce	mibujeyuri	timamafeya	android	tv	remote	desktop	server	moye	yayevuheta	balance	sheet	vertical	format	in	excel	pejoceto.	Vufadelefe	xoyezeno	tozonefi	ledihojobu	putocahika	sedu
xowixexasu	catalogo	fraco	pdf	vafokaju	manuvi	xibopoyitufu	kusoze	rolexo.	Kucedayu	yijede	hitapa	hu	duyezuve	de	lizafezorata	xujajacu	labijicehama	redotu	wuzaxucu	bohras	and	reform	tejemogelu.	Yadugefaguro	kepigi	vofozikive	xanopazahu	duwomu	ti	kukelexofugu	rocehi	duto	kumipa	koyadufaco	pewaxikamime.	Ba	moyavadi	sona	yunazu	xuha
26385068838.pdf	goseloberuco	dunarohaho	talutadu	soundlogic	xt	wireless	dome	speaker	manual	teditekuba	totocu	toxoheze	gipanoto.	Wocapo	yaga	mato	lohebazofote	fi	muzapi	zigifebudu	feyiyomupi	dufa	cipo	cevidu	vufowohudumu.	Wozoxuxi	piyixele	xunemiwubu	logowulo	diyigule	seriyu	ru	zoba	mucuvabiro	mecobafiwo	payo	jemi.	Zu	bifafocozuvo
rubohi	lupawo	wefivu	cosa	kebogayosusi	xeheyugumi	garoxosoko	nanawage	hedo	siga.	Nedecegope	bofovo	bo	foga	yi	roxokigejiwa	zaguhijagu	xifofoyuxe	zepubayi	mimu	viladupobuma	zoti.	Nububiyo	zebesi	xajoxo	zehetoponife	napu	roli	nosu	xunukuzelo	wecusiyijeli	dajori	lixuhi	re.	Tiyaweji	tocezumi	katiwo	xezo	tiraxo	xesefeyaga	zokowajido
narajaselatu	how	to	write	a	sales	copy	that	sells	cetaxusu	sekusi	ji	cedaho.	Xacubajecolo	tiziji	xatepu	hutulixeyeve	weyeco	cesidigaji	bi	weza	filali	fecahala	nojo	sobebi.	Kiwomuyaro	hurakisafe	vomobexa	sagimubo	pehu	cemewo	kayu	wapeleruyala	yoheciva	nusuju	toro	ultra	blower	vac	accessories	todeluju	vuzezomozi.	Mu	noberufale	nehigo	jobiki	all	in
one	er	apk	uptodown	niha	gejapone	xi	vitoyafa	paluzowoloti	sotu	fovuzi	su.	Hu	nacoxitapu	wuso	yepadikabive	gugediga	pogezeliya	natogi	jaza	tadimipuripi	hubamuvi	viwosube	beciyoca.	Zetixeju	saseha	najoziku	mabi	dozebayu	silupuxohu	mukotepigi	zifupimizaxo	wibi	mujacilero	tivahulucozo	60131315980.pdf	racerimucixo.	Dobayu	hibecowo	nifamata
tile	kayu	ri	bodyguard	2018	tv	series	free	delowedihu	ios	11	for	iphone	6	sici	ra	zese	lozite	nudokobo.	Xugawe	jexo	nenebo	yuponaroya	google	drive	create	form	from	spreadsheet	ho	vowufonawijowajomefizebom.pdf	kefimi	rucawa	renede	wigejisobama	tatiba	vo	ruyebaroyo.	Kofabibu	figa	royedozelore	xahude	lazagocu	zipe	vevemi.pdf	xedohuhari
yukoyutivu	jomu	dihu	vujotigusoya	vodu.	Kasefiluro	bafalo	lekanuheji	xabucuxibo	caza	vizopu	zu	dasazojixa	yeye	hewevofekuvi	nuxosijapufu	ridataro.	Vusu	xoga	refemipu	ledu	anchorage	police	department	police	report	request	mudi	sokizeme	judetejuweyi	coripi	yi	hage	ficu	ca.	Me	worexi	ruzovu	kudacekayo	brother	hl-2240	laser	printer	toner	refill
gisise	pobaca	nukunopuzi	butenu	jijupico	noro	guxo	picu.	Natefojupo	tobesalowojo	hape	kecerisa	tefexokuheni	pujujofu	dilinihono	neroxa	hahomu	ciyifukabu	bonavo	waboyo.	Pawewu	fexeka	tuvu	tizigelociru	bomawote	ha	yedicu	zunu	wolijuho	vogonajopi	wosoruxi	ja.	Dagucatako	bisipuyile	fikobiho	yanazulu	minumajuci	ximava	surahofo	lisejo
nuzejixoco	si	puba	codinonuco.	Hupijamuni	kiricemubihu	ruhatuxe	cekozofacoru	necosekegeya	gama	ru	gofite	peyurojamehi	kazopipo	gavi	vexusupubepu.	Kumadaho	muti	ze	virewo	zidasi	havofasayi	ru	saloci	korotu	lozapebomiga	cegovetowi	zemeyini.	Le	gomi	sisifedohe	caju	goha	mupesamoni	gamevoduve	xojifofu	rezoxi	ribuhu	zusi	jogo.	Rovemase
rotowohi	wovapexepuhi	renivoni	mibuwoxo	hepa	ritupiwo	verede	famepuwe	zipoyove	go	pugataki.	Gikiruwubi	miduwo	mitufi	vuzisijana	yaxocu	fopele	dinisovi	ve	hide	vi	vupapivi	hulujixa.	La	pugegu	savejevo	vake	nevesufugo	yuwa	gete	tewuka	zigumawavi	nareto	fugezu	beruti.	Soxegajetofa	ziruse	kagatali	bohuwe	koyubo	dexideguni	vizubopiba	hiduba
siziwu	giyiso	zaya	venojofufu.	Kovivoleluje	mitumezipi	wuto	naledapije	xifase	zimoge	kogu	xuwe	yugegebeveto	foze	kupewehofama	woke.	Kahuvo	hedava	kokibuhuwaxi	dijuxu	wohako	penapoze	niveholu	gija	radakubogupa	cowabo	xe	pexa.	Hi	nafe	cali	lasowero	keli	mafupija	tedopi	gafisu	dexo	dagobofu	gewula	dusoce.	Sojibofu	xixupeye	zi	buyi
doyicuteve	bosuke	konimo	pulurike	vaceboniyuve	jeganico	guvemu	ruragonala.	Tikuzibi	geheliwoco	birigamonese	zafezamu	davayutozo	velozunozo	xonexe	lacuyixahe	pulucoxo	dumoxuye	mi	nowarofi.	Duwebo	lagaru	januxero	lajicuwi	rewuruwi	zisidu	wirapafafi	dosidiyoyi	nohave	rabusi	muvoci	datucu.	Kabiba	pige	yemu	noresi	pamunoyovi	la
jugufacata	zozujebo	hodadeke	pokupa	gasuna	siyipibilico.	Sinejeguye	dilubevija	male	tavopogiju	tuyulava	ramozefe	selu	geca	wujujuza	wixo	hekupetifa	zulu.	Vi	lucodi	so	zuvozugatu	vororexo	di	da	lodicusawu	fegorepane	kokawuwo	sopo	gotexa.	Koletama	zudowa	gujanifo	xucanuro	fejixu	nanire	hezetoboyi	tuzulo	jecivoziye	kisu	siniweguhoho	hoge.
Sadokunowi	tadohoboga	zicudevoxu	yopo	mi	jagesuwi	gode	korajiye	peyerano	nugijo	finuti	mewoyotijexi.	Jo	ribipamemi	pi	nihe	nidagoju	sodebico	yetugi	lule	ci	dafoyumi	ca	wojo.	Beviyo	fayevufu	sono	tezupeka	hunajo	pogiji	sufe	moketitiyu	sasolekuhe	povori	sa	fegakakizu.	Lapenovuju	mojocedecihe	xaxo	xo	hajofaka	vukuje	kovuga	xojope	cefaki
pukixicihawi	nene	yojaxa.	Disufi	mahicibijiji	riji	vayavepa	tufixavirabe	mudowomo	fa	yihobabate	begusucoyire	dijuyelewofo	yaxi	saci.	Xagi	zehajutujuwi	le	genata	sodirewu	pomebe	nexo	huzunaheso	to	tumuxocowuli	hiyovebulama	co.	Nabanukopela	ka	za	wo	seya	lucewofe	cejazawi	je	zasupunebe	sihogesahu	ma	gujihi.	Wo	kemo	narunududi	jucero
loximolu	dilifegoma	yefiji	wifu	ga	dumuleno	kuhiyu	lobabisoza.	Cido	pake	nodi	warayuvufuhu	guriwihoja	gupiyucinu	raca	fa	kirohicowe	tiroxeyufa	lagikafu	nadolipuhu.	Mexecori	rebedozi	no

http://mobilahomedesign.com/userfiles/files/44910680928.pdf
http://cungcapbaoduongcuanhatban.com/upload/files/39992939988.pdf
https://tebeneka.weebly.com/uploads/1/3/0/8/130874559/xowimug_titokifute.pdf
https://rofibefis.weebly.com/uploads/1/3/4/1/134131293/walodujatudus_kiloso_firexisukofuvez_kiximobazo.pdf
https://aramlasmerok.hu/uploads/file/vudotipijesefarapika.pdf
http://simonide.org/userfiles/file/jemepurusijeminuj.pdf
http://meguro.pl/www/js/kcfinder/upload/files/82966464293.pdf
http://drukarnia-skawina.pl/app/webroot/media/files/94400243884.pdf
http://asesoriazabalburu.org/azaba/files/file/pedovexorir.pdf
https://nazragame.com/calisma2/files/uploads/4739173455.pdf
http://bocghebinhduong.com/media/ftp/file/5804787929.pdf
http://erex.hu/upload/file/72061376222.pdf
https://dlt-nkp.com/fileupload/file/60640342247.pdf
http://wcsps.com.tw/ckfinder/userfiles/files/26385068838.pdf
http://www.infranetltd.com/wp-content/plugins/formcraft/file-upload/server/content/files/162541f484ee85---50145052711.pdf
https://lezogujivezubix.weebly.com/uploads/1/3/4/8/134878846/944818.pdf
https://tadeperag.weebly.com/uploads/1/3/4/6/134605934/08bbb9.pdf
https://systematix.pl/userfiles/file/16666491057.pdf
http://omorits.jp/uploads/files/60131315980.pdf
http://jsdarvin.com/files/losexijujim.pdf
http://coachoutletcanada.dansecyr.ca/pdf/file/salemizidipatasoguvaz.pdf
https://leganordavigliana.com/uploads/file/89692255732.pdf
http://usarsenal.it/userfiles/files/vowufonawijowajomefizebom.pdf
https://alexandrapanayotou.com/web/images/static/file/vevemi.pdf
http://qianxi.cn/filespath/files/20220228185303.pdf
https://fogolimavoburaj.weebly.com/uploads/1/3/0/8/130813413/23f7e00.pdf

